kottke.org posts about science

How to Solve Thorny Global Problems

posted by Jason Kottke   Sep 22, 2021

Within the past 50 years, the global community has solved two huge problems that had the potential to harm every person on Earth. Smallpox once killed 30% of the people who contracted the disease but through the invention of an effective, safe vaccine and an intense effort that began in the 1960s, smallpox was completely eradicated by 1980. In the 1980s, scientists discovered a hole in the ozone layer that protects the Earth from UV radiation; further depletion would have caused major problems with the world’s food supply and an epidemic of skin cancer. Forty years later, we’ve virtually eliminated the chemicals causing the depletion and ozone losses have stabilized and have recently shown improvement.

So how did we do it? The short video above talks through each of challenges, how they were met (science + politics + a bit of luck), and how we might apply these lessons to the big problems of today (climate emergency, the pandemic).

Here’s Why You’ll Fail the Milk Crate Challenge

posted by Jason Kottke   Sep 10, 2021

Bored of dying from Covid-19, Americans have dreamed up a more entertaining way to mortally wound themselves: the milk crate challenge. Wired asked structural engineer Dr. Nehemiah Mabry (who explained the different types of bridges to us earlier in the year) to explain the physics behind the challenge and why you shouldn’t attempt it. (via @pomeranian99)

This Virus Shouldn’t Exist (But it Does)

posted by Jason Kottke   Sep 08, 2021

In one of their most popular videos in awhile, kottke.org favorite Kurzgesagt tells us about something I’d never heard of before: giruses. These giant viruses have only been discovered within the last 20 years and are so large and contain so much genetic material that maybe they are actually alive?

Hidden in the microverse all around you, there is a merciless war being fought by the true rulers of this planet, microorganisms. Amoebae, protists, bacteria, archaea and fungi compete for resources and space. And then there are the strange horrors that are viruses, hunting everyone else. Not even being alive, they are the tiniest, most abundant and deadliest beings on earth, killing trillions every day. Not interested in resources, only in living things to take over. Or so we thought.

It turns out that there are giant viruses that blur the line between life and death — and other viruses hunting them.

Even with Delta Variant, the Amazing Vaccines Are Saving Lives

posted by Jason Kottke   Aug 25, 2021

It may seem like sometimes that with the pandemic, we’re back to square one. With the much more contagious Delta variant in play and an increasing number of breakthrough infections, the efficacy of these vaccines that we thought were amazing maybe aren’t? (Or maybe we just need to readjust our expectations?) But in terms of what these vaccines were specifically developed for — reducing & preventing severe disease and death — they are still very much doing their job. Just take a look at this graph from a White House Covid-19 press briefing yesterday:

a graph of Covid-19-associated hospitalizations among unvaccinated and fully vaccinated in the US

Even with Delta endemic in the country, the vaccines are providing extraordinary protection against infections severe enough to land folks in the hospital. In a recent CDC study of infections and hospitalizations in Los Angeles County, they report that on July 25, the hospitalization rate of unvaccinated people was 29.2 times that of fully vaccinated persons. 29 times the protection is astounding for a medical intervention. These vaccines work, we’re lucky to have them, and we need to get as many people worldwide as we can vaccinated as quickly as we can. Period.

1800s Astronomical Drawings vs. Modern NASA Images

posted by Jason Kottke   Aug 23, 2021

I love this post from the NYPL comparing astronomical drawings by E.L. Trouvelot done in the 1870s to contemporary NASA images.

Trouvelot was a French immigrant to the US in the 1800s, and his job was to create sketches of astronomical observations at Harvard College’s observatory. Building off of this sketch work, Trouvelot decided to do large pastel drawings of “the celestial phenomena as they appear…through the great modern telescopes.”

He made drawings of Saturn, Jupiter, aurora borealis, the Milky Way, and more. Here’s his incredible drawing of sun spots compared to a recent image of the Sun’s surface:

a drawing of sun spots

the sun

And his drawing of a solar eclipse compared to a recent image:

a drawing of a total solar eclipse

modern photo of a solar eclipse

Check out the post for more examples of Trouvelot’s work.

What’s the Proper Metaphor for the Covid Vaccine?

posted by Jason Kottke   Aug 13, 2021

For The Atlantic, Katherine Wu writes about the difficulty of communicating how vaccines work and how they protect individuals and communities from disease: Vaccines Are Like Sunscreen… No, Wait, Airbags… No, Wait…

Unfortunately, communal benefit is harder to define, harder to quantify, and harder to describe than individual protection, because “it’s not the way Americans are used to thinking about things,” Neil Lewis, a behavioral scientist and communications expert at Cornell, told me. That’s in part because communal risk isn’t characteristic of the health perils people in wealthy countries are accustomed to facing: heart disease, stroke, diabetes, cancer. Maybe that’s part of why we gravitate toward individual-focused comparisons. Slipping into a pandemic-compatible, population-based frame of mind is a big shift. In the age of COVID-19, “there’s been a lot of focus on the individual,” Lewis told me. That’s pretty at odds “with how infection works.”

As someone who has struggled with analogizing the virus & vaccines, I was nodding my head a lot while reading this. Something I’ve noticed in recent years that Wu didn’t get into is that readers desire precision in metaphors and analogies, even though metaphor is — by definition! — not supposed to be taken literally. People seem much more interested in taking analogies apart, identifying what doesn’t work, and discarding them rather than — more generously and constructively IMO — using them as the author intended to better understand the subject matter. The perfect metaphor doesn’t exist because then it wouldn’t be a metaphor.

Animals Are Getting Smaller as the Planet Warms

posted by Jason Kottke   Aug 13, 2021

One of the many effects of human-driven climate change is that, on average, the bodies of animals are getting smaller — birds, fish, deer, frogs, rodents, insects. And these changes could have large and unpredictable consequences.

“That’s the problem with human-driven climate change. It’s the rate of change that’s just orders of magnitude faster than what the natural world has had to deal with in the past. Size is really important to survival, and you can’t just change that indefinitely without consequence. For one thing, I don’t think it’s feasible that species are going to be able to continue to get smaller and maintain things like a migration from one hemisphere to another.”

And since smaller bodies can hold fewer eggs, they result in fewer offspring, and a lower population size in the long run. For amphibians who need to keep their skin wet in order to breathe, shrinking can mean higher chances of drying out in a drought because their bodies absorb and hold smaller quantities of water.

But the more concerning consequences have to do with how this could destabilize relationships between species. Because shrinking plays out at different rates for different species, predators might have to eat more and more of shrinking prey, for example, throwing a finely-tuned ecosystem off balance.

Getting into the Delta Variant Mindset

posted by Jason Kottke   Aug 12, 2021

I’m just going to go ahead and say it right up front here: if you had certain expectations in May/June about how the pandemic was going to end in the US (or was even thinking it was over), you need to throw much of that mindset in the trash and start again because the Delta variant of SARS-CoV-2 has changed the game. I know this sucks to hear,1 but Delta is sufficiently different that we need to reset and stop assuming we can solely rely on the vaccines to stop Covid-19 from spreading. Ed Yong’s typically excellent piece on how delta has changed the pandemic’s endgame is helping me wrap my head around this.

But something is different now — the virus. “The models in late spring were pretty consistent that we were going to have a ‘normal’ summer,” Samuel Scarpino of the Rockefeller Foundation, who studies infectious-disease dynamics, told me. “Obviously, that’s not where we are.” In part, he says, people underestimated how transmissible Delta is, or what that would mean. The original SARS-CoV-2 virus had a basic reproduction number, or R0, of 2 to 3, meaning that each infected person spreads it to two or three people. Those are average figures: In practice, the virus spread in uneven bursts, with relatively few people infecting large clusters in super-spreading events. But the CDC estimates that Delta’s R0 lies between 5 and 9, which “is shockingly high,” Eleanor Murray, an epidemiologist at Boston University, told me. At that level, “its reliance on super-spreading events basically goes away,” Scarpino said.

In simple terms, many people who caught the original virus didn’t pass it to anyone, but most people who catch Delta create clusters of infection. That partly explains why cases have risen so explosively. It also means that the virus will almost certainly be a permanent part of our lives, even as vaccines blunt its ability to cause death and severe disease.

And a reminder, as we “argue over small measures” here in the US, that most of the world is in a much worse place:

Pandemics end. But this one is not yet over, and especially not globally. Just 16 percent of the world’s population is fully vaccinated. Many countries, where barely 1 percent of people have received a single dose, are “in for a tough year of either lockdowns or catastrophic epidemics,” Adam Kucharski, the infectious-disease modeler, told me. The U.S. and the U.K. are further along the path to endemicity, “but they’re not there yet, and that last slog is often the toughest,” he added. “I have limited sympathy for people who are arguing over small measures in rich countries when we have uncontrolled epidemics in large parts of the world.”

Where I think Yong’s piece stumbles a little is in its emphasis of the current vaccines’ protection against infection from Delta. As David Wallace-Wells explains in his piece Don’t Panic, But Breakthrough Cases May Be a Bigger Problem Than You’ve Been Told, vaccines still offer excellent protection against severe infection, hospitalization, and death, but there is evidence that breakthrough infections are more common than many public health officials are saying. The problem lies with the use of statistics from before vaccines and Delta were prevalent:

Almost all of these calculations about the share of breakthrough cases have been made using year-to-date 2021 data, which include several months before mass vaccination (when by definition vanishingly few breakthrough cases could have occurred) during which time the vast majority of the year’s total cases and deaths took place (during the winter surge). This is a corollary to the reassuring principle you might’ve heard, over the last few weeks, that as vaccination levels grow we would expect the percentage of vaccinated cases will, too — the implication being that we shouldn’t worry too much over panicked headlines about the relative share of vaccinated cases in a state or ICU but instead focus on the absolute number of those cases in making a judgment about vaccine protection across a population. This is true. But it also means that when vaccination levels were very low, there were inevitably very few breakthrough cases, too. That means that to calculate a prevalence ratio for cases or deaths using the full year’s data requires you to effectively divide a numerator of four months of data by a denominator of seven months of data. And because those first few brutal months of the year were exceptional ones that do not reflect anything like the present state of vaccination or the disease, they throw off the ratios even further. Two-thirds of 2021 cases and 80 percent of deaths came before April 1, when only 15 percent of the country was fully vaccinated, which means calculating year-to-date ratios means possibly underestimating the prevalence of breakthrough cases by a factor of three and breakthrough deaths by a factor of five. And if the ratios are calculated using data sets that end before the Delta surge, as many have been, that adds an additional distortion, since both breakthrough cases and severe illness among the vaccinated appear to be significantly more common with this variant than with previous ones.

Vaccines are still the best way to protect yourself and your community from Covid-19. The vaccines are still really good, better than we could have hoped for. But they’re not magic and with the rise of Delta (and potentially worse variants on the horizon if the virus is allowed to continue to spread unchecked and mutate), we need to keep doing the other things (masking, distancing, ventilation, etc.) in order to keep the virus in check and avoid lockdowns, school closings, outbreaks, and mass death. We’ve got the tools; we just need to summon the will and be in the right mindset.

  1. In a tweet introducing his piece, Yong says “Many folks are upset & confused by the last month” and that’s right where I am with this. Maybe you are too. I’m expecting to get angry email about this post, calling it alarmist. But Covid is different now and thinking our same March 2021 thoughts about it isn’t going to help ourselves, our families, or our communities. The sooner we can regroup, the better.

How the Human Immune System Works

posted by Jason Kottke   Aug 10, 2021

In the first part of a multi-video series on how the human immune system works, Kurzgesagt describes how the system’s first lines of defense work when your body is invaded by microorganisms.

The human immune system is the most complex biological system we know, after the human brain, and yet, most of us never learn how it works. Or what it is. Your immune System consists of hundreds of tiny and two large organs, it has its own transport network spread throughout your body. Every day it makes hundreds of billions of fresh cells.

It is not some sort of abstract entity. Your immune system is YOU. Your biology protecting you from the billions of microorganisms that want to consume you and from your own perverted cells that turn into cancer.

Kurzgesagt founder Philipp Dettmer is publishing a companion book to the series, Immune: A Journey Into the Mysterious System That Keeps You Alive; it’s out in late September.

I have read a lot about the human immune system over the past 18 months, but this video was still helpful in understanding how it all fits together. For more information, consult their extensive list of sources or watch their earlier video on what the SARS-CoV-2 virus does to a human body.

Size Comparison: The Largest Black Hole in the Universe

posted by Jason Kottke   Aug 04, 2021

Black holes are the largest single objects in the universe, many times larger than even the biggest stars, and have no upper limit to their size. But practically, how big is the biggest, heaviest black hole in the universe? (A: More massive than the entire Milky Way.)

The largest things in the universe are black holes. In contrast to things like planets or stars they have no physical size limit, and can literally grow endlessly. Although in reality specific things need to happen to create different kinds of black holes, from really tiny ones to the largest single things in the universe. So how do black holes grow and how large is the largest of them all?

Videos about space are where Kurzgesagt really shines. I’ve seen all their videos about black holes and related objects, and I always pick up something I never knew whenever a new one comes out. This time around, it was quasistars and the surprisingly small mass of supermassive black holes located at galactic centers compared to the galaxies themselves.

“If It Doesn’t Shine In Your Face, You Don’t See Anything”

posted by Jason Kottke   Jul 28, 2021

Jocelyn Bell Burnell as a graduate student

As I’ve written before, in the history of astronomy and astrophysics, women have made major discoveries and played a significant role in advancing our understanding of the universe but have often not gotten the recognition their male peers enjoy. In 1967, while she was working on her doctoral research with her advisor Antony Hewish, Jocelyn Bell Burnell (then Jocelyn Bell) discovered a new and unusual kind of object, the pulsar. In this short documentary, Bell Burnell shares her story — how she got interested in radio astronomy, the prejudice with which she was treated as the only woman in her university program, how she discovered the first pulsar and persisted (more than once) through Hewish’s assertions that the object was “interference”, and how she was passed over for the Nobel Prize for her discovery.

In 2018, Bell Burnell was awarded the Special Breakthrough Prize in Fundamental Physics “for fundamental contributions to the discovery of pulsars, and a lifetime of inspiring leadership in the scientific community”, joining past honorees like the LIGO team, Stephen Hawking, and the team that discovered the Higgs boson. She donated the entire $3 million prize to the Institute of Physics to help support “PhD physics students from under-represented groups” with their educations.

It’s not justice, but I will note that Bell Burnell’s Wikipedia page is longer and more substantial than Hewish’s, despite his Nobel.

Living with Delta

posted by Jason Kottke   Jul 21, 2021

This piece by Susan Matthews is really helpful for those of us who are vaccinated and trying to figure out what their risks are regarding the much more transmissible delta variant of SARS-CoV-2. Covid-19 is endemic now — how do we live with that? What reasonable actions should we take to keep ourselves, our communities, and our loved ones safe?

All of this is making people — yes, probably mostly vaccinated people — rethink the basic questions they thought their vaccine had answered for them: Can I go to restaurants and bars unmasked? Can I go back to the office? Can I see my grandma? Can I go on vacation? Can I unmask at my people-facing job? Can I have a wedding, or a party? The answer to those questions is not quite as easy as “yes, if you’re vaccinated.” It depends partly on how many in your group are vaccinated, but the actual answer is basically the same as it’s been all pandemic: It depends on your risk tolerance, it depends on what is happening with case counts locally (though, as more people travel, this might become a less reliable tool), and it depends on any unique risk factors in your group. Kass’ perspective felt novel to me: She said she suspects that in the end, a lot of people are going to end up boosting their immunity by suffering through a mild case of COVID. So no one should feel that bad about getting sick after they’re vaxxed. What matters is getting the order right: “If everyone who gets vaccinated still gets COVID but doesn’t die, that’s a success,” she said. The issue is that it doesn’t feel like a success for vaccinated people. Plus, “if you get infected after you’re vaxxed, it’s all you talk about,” she said. And right now, that’s understandably freaking out a lot of vaccinated people who thought they were in the clear.

Long Covid isn’t mentioned anywhere in here though — surely that has to be part of the conversation here (although anecdotally it doesn’t seem like too much of a worry).

Swimming Tentacled Droplets

posted by Jason Kottke   Jul 19, 2021

Well, this is really quite odd. A group of scientists discovered that if they cool ordinary oily droplets floating in water down to around 2-8°C, they change shape, grow tentacles, and propel themselves around like tiny little sci-fi creatures.

Some of the particles’ facets grow while other shrink, producing a variety of geometrical forms such as kites, isosceles triangles and spiked tetrahedra. Then, from some of the sharp corners emerge tentacle-like strands, as if being extruded from a nozzle. As they grow, the strands bend into undulating shapes — and the droplets start to swim, propelled through the fluid by the tentacles’ extension.

Visualization of How Fast a Ball Drops on Various Solar System Bodies

posted by Jason Kottke   Jul 14, 2021

This is an animation of how quickly an object falls 1 km to the surfaces of solar system objects like the Earth, Sun, Ceres, Jupiter, the Moon, and Pluto. For instance, it takes 14.3 seconds to cover that distance on Earth and 13.8 seconds on Saturn.

It might be surprising to see large planets have a pull comparable to smaller ones at the surface, for example Uranus pulls the ball down slower than at Earth! Why? Because the low average density of Uranus puts the surface far away from the majority of the mass. Similarly, Mars is nearly twice the mass of Mercury, but you can see the surface gravity is actually the same… this indicates that Mercury is much denser than Mars.

(via @thekidshouldsee)

Where Did SARS-CoV-2 Come From?

posted by Jason Kottke   Jun 28, 2021

Over the past several months, I’ve read several pieces about the possible origins of SARS-CoV-2 and have been frustrated with the certainty with which folks who should know better have embraced the “lab leak hypothesis”. So, I was happy to see Zeynep Tufekci’s characteristically even-handed and comprehensive overview of the evidence about the virus’s origins in the NY Times.

While the Chinese government’s obstruction may keep us from knowing for sure whether the virus, SARS-CoV-2, came from the wild directly or through a lab in Wuhan or if genetic experimentation was involved, what we know already is troubling.

Years of research on the dangers of coronaviruses, and the broader history of lab accidents and errors around the world, provided scientists with plenty of reasons to proceed with caution as they investigated this class of pathogens. But troubling safety practices persisted.

Worse, researchers’ success at uncovering new threats did not always translate into preparedness.

Even if the coronavirus jumped from animal to human without the involvement of research activities, the groundwork for a potential disaster had been laid for years, and learning its lessons is essential to preventing others.

Is it possible that SARS-CoV-2 came from a lab? Yes. Is it probable? We can’t know that right now. It’s a tantalizing puzzle involving a possible cover-up, but irresponsibly assigning certainty to the situation does no one but attention-seeking pundits any good.

New USPS Stamps Celebrate the Sun

posted by Jason Kottke   Jun 24, 2021

postage stamp with an image of a plasma blast from the Sun

postage stamp with an image of a solar flare from the Sun

a group of postage stamps featuring images of the Sun

The US Postal Service has released a set of Sun Science stamps that use images from NASA’s Solar Dynamics Observatory to illustrate different solar phenomena like plasma blasts, sunspots, and solar flares.

Printed with a foil treatment that adds a glimmer to the stamps, the images on these stamps come from NASA’s Solar Dynamics Observatory, a spacecraft launched in February 2010 to keep a constant watch on the sun from geosynchronous orbit above Earth. The striking colors in these images do not represent the actual colors of the sun as perceived by human eyesight. Instead, each image is colorized by NASA according to different wavelengths that reveal or highlight specific features of the sun’s activity.

One of the stamps highlights sunspots, two feature images of coronal holes, two show coronal loops, two depict plasma blasts, one is a view of an active sun that emphasizes its magnetic fields, and two show different views of a solar flare.

NASA has more on the science behind the images on the stamps and the whole set of stamps are available for purchase online.

See also A Decade of the Sun.

Dark Fish

posted by Jason Kottke   Jun 23, 2021

Sometimes you run across an aspect of reality and it just completely blows your mind. You’ve heard of dark matter, right? Well, meet dark fish: biologists suspect that up to 95% of the world’s total fish population lives in a deep layer of the ocean that is difficult to detect and we know little about.

An international team of marine biologists has found mesopelagic fish in the earth’s oceans constitute 10 to 30 times more biomass than previously thought.

UWA Professor Carlos Duarte says mesopelagic fish — fish that live between 100 and 1000m below the surface — must therefore constitute 95 per cent of the world’s fish biomass.

“Because the stock is much larger it means this layer must play a more significant role in the functioning of the ocean and affecting the flow of carbon and oxygen in the ocean,” he says.

See also this thread from ocean scientist Andrew Thaler:

There’s a globe-spanning layer of mesopelagic fish that is so dense it distorts SONAR. For decades we had no idea what created the Deep Scattering Layer or why it moved. We still know almost nothing about it.

It’s astounding how much we don’t know about the ocean:

There’s an entire family of whales with at least 22 species that we know almost nothing about.

We know way more about stars that are billions of light years away than about some parts of the ocean a few hundred feet below the surface of our own planet.

See also dark fungi: “By one estimate, there are between 2.2 million and 3.8 million species of fungi — and more than 90% of them aren’t cataloged.”. (via @_zeets & @chadmumm)

Unexpected Minor Planet to Visit the Inner Solar System Soon

posted by Jason Kottke   Jun 21, 2021

Well, this is cool: a recently discovered minor planet estimated to be between 62 and 230 miles across is currently journeying through our solar system and sometime in 2031 will be almost as close to the Sun as Saturn.

And it turns out, astronomers are about to witness the closest pass of this incredible round trip. Currently, 2014 UN271 is about 22 Astronomical Units (AU) from the Sun (for reference, Earth is 1 AU from the Sun). That means it’s already closer than Neptune, at 29.7 AU. And it’s not stopping there — it’s already traveled 7 AU in the last seven years, and at its closest in 2031, it’s expected to pass within 10.9 AU of the Sun, almost reaching the orbit of Saturn.

Before then, it’s expected to develop the characteristic coma and tail of a comet, as icy material on its surface vaporizes from the heat of the Sun. This close pass would give astronomers an unprecedented close look at Oort cloud objects.

C’mon NASA, let’s a get a probe fired up and visit this very unusual object!

There’s No Such Thing as a Tree

posted by Jason Kottke   Jun 16, 2021

Obviously, there are trees. But speaking phylogenetically, trees aren’t a thing. Some things that are trees evolved from things that are not trees and other things that are trees evolved into things that aren’t trees. Confused? This might clear things up.

“Trees” are not a coherent phylogenetic category. On the evolutionary tree of plants, trees are regularly interspersed with things that are absolutely, 100% not trees. This means that, for instance, either:

The common ancestor of a maple and a mulberry tree was not a tree.
The common ancestor of a stinging nettle and a strawberry plant was a tree.
And this is true for most trees or non-trees that you can think of.

See also there’s no such thing as a vegetable and there’s no such thing as a fish.

What would the evolutionary tree of salmon, lungfish, and cows be? The answer, it appears at first glance, is simple. Salmon and lungfish, being fish, would cluster nicely together on one branch, and very non-fishy cows would be off on a separate branch. Right? Wrong. Contrary to what you might expect, what you see above is their evolutionary tree. Working up from the root, the lineage that leads to salmon branches off first. Keep tracing up the tree, and you’ll see that the lineage from which the salmon branched off eventually branches into two new lineages: the one leading to lungfish and the other leading to cows. In other words, a cow and a lungfish are more closely related to one another than either is to salmon.

(via @smorewithface)

The Information Visualization Revolution

posted by Jason Kottke   Jun 14, 2021

a 17th century graph of various estimated distances from Toledo, Spain to Rome

For the New Yorker, Hannah Fry wrote a brief history of information visualization, a quiet innovation that has changed the world:

Van Langren could have put these values in a table, as would have been typical for the time, but, as Friendly and Wainer observe, “only a graph speaks directly to the eyes.” Once the numbers were visualized, the enormous differences among them — and the stakes dependent on those differences — became impossible to ignore. Van Langren wrote, “If the Longitude between Toledo and Rome is not known with certainty, consider, Your Highness, what it will be for the Western and Oriental Indies, that in comparison the former distance is almost nothing.”

Van Langren’s image marked an extraordinary conceptual leap. He was a skilled cartographer from a long line of cartographers, so he would have been familiar with depicting distances on a page. But, as Tufte puts it, in his classic study “Visual Explanations” (1997), “Maps resemble miniature pictorial representations of the physical world.” Here was something entirely new: encoding the estimate of a distance by its position along a line. Scientists were well versed in handling a range of values for a single property, but until then science had only ever been concerned with how to get rid of error — how to take a collection of wrong answers and reduce its dimension to give a single, best answer. Van Langren was the first person to realize that a story lay in that dimension, one that could be physically seen on a page by abstracting it along a thin inked line.

Van Langren’s graph, which Fry says “might be the first statistical graph in history”, is pictured at the top of this post.

Flat-Packed Pastas That Pop Open When Cooked

posted by Jason Kottke   Jun 02, 2021

Flat Packed Pasta

Inspired by space-saving flat-packed furniture, scientists at Carnegie Mellon University have developed a technique for making pasta shapes that start out flat when dry but “morph” into their final 3D shapes when cooked. The secret is stamping different groove patterns into the pasta dough.

The solution: something Wang, Yao, and their co-authors term “groove-based transient morphing.” They found that stamping flat pasta sheets with different groove patterns enabled them to control the final pasta shape after cooking. According to the authors, the grooves increase how long it takes to cook that part of the pasta. So those areas expand less than the smooth areas, giving rise to many different shapes.

The team found that the pasta reached its maximum bending angle after about 12 minutes and retained this angle for around 20 minutes before it began to bend back. The researchers were able to produce simple helical and cone shapes, as well as more complex saddles and twists (the latter achieved by introducing double-sided grooves).

I am assuming those grooves would also aid in holding sauce better, a topic we’ve delved into recently. You can read the full research paper on the morphing pasta here. (via the prepared)

UFOs Are Not Aliens

posted by Jason Kottke   Jun 01, 2021

Due to recent government reports, declassified data, media interest in those data & reports, and a long-simmering interest by the public, UFOs are back in the public imagination. Adam Frank, an astrophysicist at the University of Rochester who is searching for signs of extraterrestrial life, says that there’s little chance that UFOs are aliens.

I understand that U.F.O. sightings, which date back at least to 1947, are synonymous in the popular imagination with evidence of extraterrestrials. But scientifically speaking, there is little to warrant that connection. There are excellent reasons to search for extraterrestrial life, but there are equally excellent reasons not to conclude that we have found evidence of it with U.F.O. sightings.

If UFOs are alien craft, we would never see them:

There are also common-sense objections. If we are being frequently visited by aliens, why don’t they just land on the White House lawn and announce themselves? There is a recurring narrative, perhaps best exemplified by the TV show “The X-Files,” that these creatures have some mysterious reason to remain hidden from us. But if the mission of these aliens calls for stealth, they seem surprisingly incompetent. You would think that creatures technologically capable of traversing the mind-boggling distances between the stars would also know how to turn off their high beams at night and to elude our primitive infrared cameras.

More people talking about a thing doesn’t make it credible. More people talking about potential evidence of a thing doesn’t make it credible. Evidence makes something credible.

Was the Microwave Invented to Thaw Out Frozen Hamsters?

posted by Jason Kottke   May 28, 2021

We all know that the microwave oven was invented by Raytheon’s Percy Spencer in 1945. What this video presupposes is, maybe it was invented to thaw out frozen hamsters? And somehow James Lovelock, who formulated the Gaia hypothesis, is involved? (via @fourfoldway)

Hisako Koyama, the Woman Who Stared at the Sun

posted by Jason Kottke   May 26, 2021

In the history of science, there are women who have made significant contributions to their field but haven’t gotten the recognition that their male peers have. The field of astronomy & astrophysics in particular has had many female pioneers — Vera Rubin, Cecilia Payne-Gaposchkin, Annie Jump Cannon, Nancy Grace Roman, Maria Mitchell, Jocelyn Bell Burnell, Henrietta Swan Leavitt, Caroline Herschel, Williamina Fleming, and many others. Add to that list Hisako Koyama, a Japanese astronomer whose detailed sketches of the Sun over a 40-year period laid the foundation for a 400-year timeline of sunspot activity, which has aided researchers in studying solar cycles and magnetic fields.

Ms. Koyama was a most unusual woman of her time. As a scientist, she bridged the amateur and professional world. She preferred “doing” activities: observing, data recording, interacting with the public, and writing. No doubt many Japanese citizens benefited from personal interaction with her. The space and geophysics community continues to benefit from her regular and precise observations of the Sun. Although we know very little of her young personal life other than she was relatively well educated and had a father who supported her desire to view the skies by providing a telescope, we can see from snippets in Japanese amateur astronomy articles that she had a passion for observing, as revealed in her 1981 article: “I simply can’t stop observing when thinking that one can never know when the nature will show us something unusual.”

Here are a few of her sunspot sketches, the top two done using her home telescope and the bottom one using the much larger telescope at the National Museum of Nature and Science (that shows the largest sunspot of the 20th century):

drawings of sunspots on the Sun by Hisako Koyama

drawings of sunspots on the Sun by Hisako Koyama

(via the kid should see this)

The Micrometeorites All Around Us

posted by Jason Kottke   May 20, 2021

microscopic photo of a micrometeorite

microscopic photo of a micrometeorite

microscopic photo of a micrometeorite

microscopic photo of a micrometeorite

Jon Larsen collects and photographs micrometeorites from all over the world, finding them even in urban areas mixed in among terrestrial dust and dirt.

The cosmos is a swirling soup of stardust. Every day, approximately 60 tons of dust from asteroids, comets, and other celestial bodies fall to the Earth. These tiny metallic, alien stones of various shapes, textures, and colors-known as micrometeorites-are some of the oldest pieces of matter in the solar system.

Even though micrometeorites blanket the Earth, scientists have generally only been able to discover them in remote places devoid of human presence, such as Antarctic ice, desolate deserts, and deep-sea sediments. Scientists began searching for micrometeorites in the 1960s, and they predominantly thought the extraterrestrial dust would be impossible to find in urban environments. The conventional wisdom held that densely populated areas had too much man-made sediment that camouflaged the tiny space particles.

But Jon Larsen, a Norwegian jazz musician and creator of Project Stardust, was able to show that it is possible to find micrometeorites in more populated areas. In a study published in January 2017 in the journal Geology, he and his colleagues catalogued more than 500 lustrous micrometeorites (and counting), all recovered from rooftops in urban areas.

Check out Larsen’s Project Stardust for more photos and information on how to hunt for your own. (via the kid should see this)

The Final Border Humanity Will Never Cross

posted by Jason Kottke   May 11, 2021

This video focuses on one of my favorite astrophysics facts: 94% of the observable universe is permanently unreachable by humans. (Unless we discover faster-than-light travel, but that’s fantasy at this point.)

This expansion means that there is a cosmological horizon around us. Everything beyond it, is traveling faster, relative to us, than the speed of light. So everything that passes the horizon, is irretrievably out of reach forever and we will never be able to interact with it again. In a sense it’s like a black hole’s event horizon, but all around us. 94% of the galaxies we can see today have already passed it and are lost to us forever.

“Since you started watching this video, around 22 million stars have moved out of our reach forever.” And future generations, billions of years from now, won’t even be able to see any other galaxies or detect cosmic background radiation, making knowledge about the Big Bang impossible.

The Otherworldly Sounds of Ice

posted by Jason Kottke   May 05, 2021

The holes drilled into Arctic, Antarctic, and glacial ice to harvest ice cores can be up to 2 miles deep. One of my all-time favorite sounds is created by dropping ice down into one of these holes — it makes a super-cool pinging noise, as demonstrated in these two videos:

Ice makes similar sounds under other conditions, like if you skip rocks on a frozen lake:

Or skate on really thin ice (ok this might actually be my favorite sound, with apologies to the ice core holes):

Headphones are recommended for all of these videos. The explanation for this distinctive pinging sound, which sounds like a Star Wars blaster, has to do with how fast different sound frequencies move through the ice, as explained in this video:

(via the kid should see this)

An Animated Primer on Black Holes

posted by Jason Kottke   Apr 28, 2021

You’re probably aware that black holes are weird. You can learn more about just how extremely odd they are by watching this animated primer on black holes by Kurzgesagt. The explanation about how long black holes live starting at ~9:30 is legitimately mindblowing — that hourglass metaphor especially.

Degrees of Uncertainty

posted by Jason Kottke   Apr 26, 2021

In his latest impeccably produced video, Neil Halloran looks at the science of climate change and uncertainty both in science and in the public’s trust of science.

Degrees of Uncertainty is an animated documentary about climate science, uncertainty, and knowing when to trust the experts. Using cinematic visualizations, the film travels through 20,000 years of natural temperature changes before highlighting the rapid warming of the last half century.

The vast majority of climate scientists seem pretty sure that human use of fossil fuels has warmed the Earth and that warming is increasingly having an impact on both nature and society. But how do we, as members of the public with a relatively poor understanding of science, evaluate how certain we should be?

FYI: This video includes some interactive elements that only work if you watch it on Halloran’s website.

A Helicopter Flies on Mars

posted by Jason Kottke   Apr 19, 2021

Ingenuity Shadow

Deployed from NASA’s Perseverance rover, the Ingenuity helicopter took off and hovered for about 30 seconds in its first flight early this morning.

The solar-powered helicopter first became airborne at 3:34 a.m. EDT (12:34 a.m. PDT) — 12:33 Local Mean Solar Time (Mars time) — a time the Ingenuity team determined would have optimal energy and flight conditions. Altimeter data indicate Ingenuity climbed to its prescribed maximum altitude of 10 feet (3 meters) and maintained a stable hover for 30 seconds. It then descended, touching back down on the surface of Mars after logging a total of 39.1 seconds of flight. Additional details on the test are expected in upcoming downlinks.

Ingenuity’s initial flight demonstration was autonomous — piloted by onboard guidance, navigation, and control systems running algorithms developed by the team at JPL. Because data must be sent to and returned from the Red Planet over hundreds of millions of miles using orbiting satellites and NASA’s Deep Space Network, Ingenuity cannot be flown with a joystick, and its flight was not observable from Earth in real time.

NASA livestreamed the team in Mission Control as the test results were transmitted back to Earth. The photo above is of Ingenuity’s shadow taken while in flight by its onboard camera.

Update: Here’s video footage of the first flight:

And there’s always room for a little Great Span on this site. Alex Knapp:

The world’s oldest living person was alive when the Wright Brothers flew at Kitty Hawk and when the first helicopter flew on Mars.