homeaboutarchives + tagsshopmembership!
aboutarchivesshopmembership!
aboutarchivesmembers!

kottke.org posts about space

Jeff Bezos sees space as the “only” option to spend his money on

posted by Patrick Tanguay   May 02, 2018

Jeff Bezos

Jeff Bezos is super rich, $131 billion kind of rich. Business wise, an admirable drive, some incredible ideas, and a very forward looking mind, playing three dimensional chess some might say. And yet, when considering what he might do with his fortune, he was a bit disappointing.

The only way that I can see to deploy this much financial resource is by converting my Amazon winnings into space travel. That is basically it, […] the most important work that I’m doing.

Blue Origin is expensive enough to be able to use that fortune, I am currently liquidating about $1 billion a year of Amazon stock to fund Blue Origin. And I plan to continue to do that for a long time. Because you’re right, you’re not going to spend it on a second dinner out.

Going to space is a great dream but I’m not sure it’s the only thing worth spending billions on. And I’m not the only one.

Great discoveries have come out of our space dreams and accomplishments, I’m sure many more will. Just look at what Elon Musk has done in a few years. Bezos’ comment was, at the very least, tone deaf. If he’s such a great leader, he should also lead for the greater good now, not just for far away dreams of space.

A high-resolution tour of the Moon from NASA

posted by Jason Kottke   Apr 09, 2018

Using imagery and data that the Lunar Reconnaissance Orbiter spacecraft has collected since 2009, NASA made this video tour of the Moon in 4K resolution. This looked incredible on my iMac screen.

As the visualization moves around the near side, far side, north and south poles, we highlight interesting features, sites, and information gathered on the lunar terrain.

See also The 100-megapixel Moon and A full rotation of the Moon.

“Oh my god!” People’s reactions to looking at the Moon through a telescope.

posted by Jason Kottke   Mar 15, 2018

Wylie Overstreet and Alex Gorosh took a telescope around the streets of LA and invited people to look at the Moon through it. Watching people’s reactions to seeing such a closeup view of the Moon with their own eyes, perhaps for the first time, is really amazing.

Whoa, that looks like that’s right down the street, man!

I often wonder what the effect is of most Americans not being able to see the night sky on a regular basis. As Sriram Murali says:

The night skies remind us of our place in the Universe. Imagine if we lived under skies full of stars. That reminder we are a tiny part of this cosmos, the awe and a special connection with this remarkable world would make us much better beings — more thoughtful, inquisitive, empathetic, kind and caring. Imagine kids growing up passionate about astronomy looking for answers and how advanced humankind would be, how connected and caring we’d feel with one another, how noble and adventurous we’d be.

Are these photographs of moons or pancakes?

posted by Jason Kottke   Feb 13, 2018

Pancake Moons

Pancake Moons

Pancake Moons

Nadine Schlieper and Robert Pufleb have published a book called Alternative Moons. The book is filled with photographs of pancakes that look like moons.

See also Christopher Jonassen’s photos of frying pans that look like Europa, one of Jupiter’s moons. Oh, and don’t forget about the world’s best pancake recipe.

The Falcon Heavy launch, space advertising for billionaires, and the beauty of science

posted by Jason Kottke   Feb 07, 2018

I’ve slept on it and my mind & soul are still reeling from the SpaceX launch of Falcon Heavy yesterday. I can’t tell you why exactly, but when the two side boosters landed safely back on Earth at nearly the same instant, as in a beautifully choreographed ballet, I nearly burst into tears. Just watching the replay gets me all verklempt:

Of course, the boosters were supposed to land at the same time. They broke away from the main stage at the same time and were controlled by identical computer systems in their descent; it’s a simple matter of high school physics to solve for the time it takes two uniform objects to travel from point A to point B. But as Richard Feynman said about the beauty of a flower, knowing the science makes moments like this more wondrous.

And then right after that, the video showed what appears to be a human driving a car in Earth orbit to the strains of David Bowie’s Life on Mars. What an incredible, ridiculous, ludicrous thing:

SpaceX Carman

There is ample prior art, but I suspect Elon Musk launching a Tesla Roadster into orbit will go down in history as the first notable advertisement in space, a marketing stunt for the ages. However, it seems problematic that billionaires can place billboards in orbit and then shoot them willy nilly into the asteroid belt without much in the way of oversight. As the Roadster recedes from Earth and our memory, will it become just another piece of trash carelessly tossed by humanity into a pristine wilderness, the first of many to come? Or as it ages, will it become an historic artifact, a orbiting testament to the achievement and naivety of early 21st century science, technology, and culture? It’s not difficult to imagine, 40 or 50 years from now, space tourists visiting the Roadster on its occasional flybys of Mars and Earth. I wonder what they’ll think of all this?

Update: The Roadster has been assigned an interplanetary ID by NASA: Tesla Roadster (AKA: Starman, 2018-017A). Using data from a Chilean telescope, astronomers have been able to figure out how fast the car is tumbling in space from the changes in brightness: 1 rotation every ~4.8 minutes (although there’s some disagreement in the comments that it might be twice that). At any rate (har har), here’s a time lapse video of the car taken with the 4.1-m SOAR telescope in Chile:

Astrophotographer Rogelio Bernal Andreo also captured the Roadster moving across the sky in this video:

Watch the Falcon Heavy launch live at 2:20pm ET today

posted by Jason Kottke   Feb 06, 2018

SpaceX is scheduled to launch their massive new rocket for the first time today. You can catch a live stream of the launch here:

When Falcon Heavy lifts off, it will be the most powerful operational rocket in the world by a factor of two. With the ability to lift into orbit nearly 64 metric tons (141,000 lb) — a mass greater than a 737 jetliner loaded with passengers, crew, luggage and fuel — Falcon Heavy can lift more than twice the payload of the next closest operational vehicle, the Delta IV Heavy, at one-third the cost. Falcon Heavy draws upon the proven heritage and reliability of Falcon 9.

As part of the launch, the three engine cores will land back on Earth, as they have been doing for years now with their other rockets. You can watch an animation of how they hope the launch will go:

The payload for this rocket test is SpaceX CEO Elon Musk’s red Tesla Roadster. No, really. If all goes as planned, the Roadster and its passenger (a dummy wearing a SpaceX suit) will be put into an orbit around the Sun somewhere in the vicinity of Mars, driving around the solar system for a billion years. SpaceX isn’t saying exactly where the Roadster might end up, but engineer Max Fagin has a guess about its eventual orbit:

You can read more about the launch from Phil Plait and on PBS NewsHour.

Update: The new time for the launch is 2:20pm ET. The launch window lasts until 4pm ET.

Flyover video of Jupiter’s Europa

posted by Jason Kottke   Feb 05, 2018

NASA engineer Kevin Gill stitched together images from two 1998 observations of Europa by the Galileo spacecraft to create this super smooth flyover video of the icy Jovian moon. The details:

Processed using low resolution color images (IR, Green, Violet) from March 29 1998 overlaying higher resolution unfiltered images taken September 26 1998. Map projected to Mercator, scale is approximately 225.7 meters per pixel, representing a span of about 1,500 kilometers.

A time lapse video where you can actually see the Crab Nebula expanding

posted by Jason Kottke   Feb 02, 2018

The Crab Nebula is the result of a supernova that happened 6,500 light years away from Earth. From our perspective, the supernova happened almost 1000 years ago, in July, 1054. Using a home-built telescope, amateur astronomer Detlef Hartmann took a photos of the Crab Nebula over a ten-year period and assembled them into a time lapse video of the nebula’s expansion. Even after a millennia and across all that distance, the expansion of the nebula is clearly visible. And why not, those gases are moving at a clip of 1400 kilometers per second (more than 3 million miles per hour or 0.5% the speed of light).

As Phil Plait notes, we’re used to seeing things in our solar system move in the skies, but far-away bodies? That’s just weeeeeird.

Sure, the Moon moves in the sky, and the planets around the Sun, but deep sky objects — stars, nebulae, galaxies — are so distant that any physical motion at all is incredibly difficult to detect. They may as well be frozen in time. Being able to see it… that’s astonishing.

Hartmann’s is not the first Crab Nebula animation; I also found animations using images from 2002 & 2012, 1973 & 2001, 1999 & 2012, and 1950 & 2000. Someone with an interest in astronomy and photo/video editing should put all these views together into one 68-year time lapse of the nebula’s expansion.

Photos from the Curiosity rover’s 2000 days on Mars

posted by Jason Kottke   Feb 01, 2018

Mars Curiosity Photos

Mars Curiosity Photos

Mars Curiosity Photos

NASA’s Curiosity rover has been on Mars for more than 2000 days now, and it has sent back over 460,000 images of the planet. Looking at them, it still boggles the mind that we can see the surface of another planet with such clarity, like we’re looking out the window at our front yard. Alan Taylor has collected a bunch of Curiosity’s photos from its mission, many of which look like holiday snapshots from the rover’s trip to the American Southwest.

Lost in Light: how light pollution obscures our view of the night sky

posted by Jason Kottke   Dec 27, 2017

Because of light pollution from urban areas, many people around the world don’t know what the night sky actually looks like. Sriram Murali made a video to illustrate light pollution levels by shooting the familiar constellation of Orion in locations around the US with different amounts of light pollution, from bright San Francisco to a state park in Utah with barely any light at all. In SF, about all you can see are the handful of stars that make up Orion’s belt, arms, and legs. But as the locations get darker, the sky explodes in detail and Orion is lost among the thousands of visible stars (and satellites if you look closely).

This video is a followup to one Murali made of the Milky Way in increasingly dark locations, which is even more dramatic:

But he did the second video with Orion as a reference because many people had no concept of what the Milky Way actually looks like because they’ve never seen it before. Murali explains why he thinks light pollution is a problem:

The night skies remind us of our place in the Universe. Imagine if we lived under skies full of stars. That reminder we are a tiny part of this cosmos, the awe and a special connection with this remarkable world would make us much better beings — more thoughtful, inquisitive, empathetic, kind and caring. Imagine kids growing up passionate about astronomy looking for answers and how advanced humankind would be, how connected and caring we’d feel with one another, how noble and adventurous we’d be.

The measurement scale for sky darkness is called the Bortle scale, as explained by David Owen in his wonderful piece in the New Yorker:

In Galileo’s time, nighttime skies all over the world would have merited the darkest Bortle ranking, Class 1. Today, the sky above New York City is Class 9, at the other extreme of the scale, and American suburban skies are typically Class 5, 6, or 7. The very darkest places in the continental United States today are almost never darker than Class 2, and are increasingly threatened. For someone standing on the North Rim of the Grand Canyon on a moonless night, the brightest feature of the sky is not the Milky Way but the glow of Las Vegas, a hundred and seventy-five miles away. To see skies truly comparable to those which Galileo knew, you would have to travel to such places as the Australian outback and the mountains of Peru.

Nicola Twilley and Geoff Manaugh interviewed Paul Bogard, author of a book on darkness about light pollution and the Bortle scale:

Twilley: It’s astonishing to read the description of a Bortle Class 1, where the Milky Way is actually capable of casting shadows!

Bogard: It is. There’s a statistic that I quote, which is that eight of every ten kids born in the United States today will never experience a sky dark enough to see the Milky Way. The Milky Way becomes visible at 3 or 4 on the Bortle scale. That’s not even down to a 1. One is pretty stringent. I’ve been in some really dark places that might not have qualified as a 1, just because there was a glow of a city way off in the distance, on the horizon. You can’t have any signs of artificial light to qualify as a Bortle Class 1.

A Bortle Class 1 is so dark that it’s bright. That’s the great thing — the darker it gets, if it’s clear, the brighter the night is. That’s something we never see either, because it’s so artificially bright in all the places we live. We never see the natural light of the night sky.

If you’d like to find a place near you with less light pollution, check out The Light Pollution Map. I’m lucky enough to live in a place with a Bortle class of 3 and I’ve visited class 2 locations before…visiting one of the class 1 parks out west is definitely on my bucket list.

The 2017 Hubble Space Telescope Advent Calendar

posted by Jason Kottke   Dec 11, 2017

Hubble Advent 2017

From Alan Taylor at In Focus, the 10th anniversary installment of the Hubble Space Telescope Advent Calendar. One image taken by the Hubble for each day in December leading up to Dec 25th. Here’s Taylor’s caption for the image above:

A Caterpillar in the Carina Nebula. Scattered across the enormous Carina nebula are numerous dense clumps of cosmic gas and dust called Bok globules, including this one, which resembles a huge glowing caterpillar. First described by by astronomer Bart Bok, the globules are relatively small, dark, and cold regions made up of molecular hydrogen, carbon oxides, helium, and dust. The glowing edge of the caterpillar indicates that it is being photoionized by the hottest stars in the surrounding cluster. It has been hypothesized that stars may form inside these dusty cocoons.

Voyager 1 just fired its trajectory thrusters for the first time since 1980

posted by Jason Kottke   Dec 04, 2017

Nasa Voyager

The last time that the four trajectory thrusters on the Voyager 1 probe were fired, Jimmy Carter was still President of the United States. But with the main attitude control thrusters deteriorating from trying to keep the probe oriented correctly, the team thought they could keep the mission going using the trajectory thrusters. So they fired them up.

On Tuesday, Nov. 28, 2017, Voyager engineers fired up the four TCM thrusters for the first time in 37 years and tested their ability to orient the spacecraft using 10-millisecond pulses. The team waited eagerly as the test results traveled through space, taking 19 hours and 35 minutes to reach an antenna in Goldstone, California, that is part of NASA’s Deep Space Network.

Lo and behold, on Wednesday, Nov. 29, they learned the TCM thrusters worked perfectly — and just as well as the attitude control thrusters.

Voyager 1 was launched in 1977, is currently more than 13 billion miles from Earth, and is still functional and doing science. Incredible.

Google Maps in space: spinnable maps of our solar system’s planets & moons

posted by Jason Kottke   Nov 30, 2017

Google Maps Io

Maaaaps! Innnnn! Spaaaaaaaace! Google Maps now features spinnable spherical maps of several planets and moons in our solar system, including Mars, the Moon, Io, Pluto, Enceladus, Titan, and Charon. Super fun. Here’s Google’s blog post about the new maps. (via emily lakdawalla)

The first asteroid from outside our solar system pays us a visit

posted by Jason Kottke   Nov 21, 2017

Asteroid Oumuamua

Back in October, the solar system welcomed a visitor from interstellar space…the first interstellar asteroid ever detected.

Astronomers have confirmed that an object that recently passed by our planet is from outside our Solar System — the first interstellar asteroid that’s ever been observed. And it doesn’t look like any object we’ve ever seen in our cosmic neighborhood before.

Follow-up observations, detailed today in Nature, have found that the asteroid is dark and reddish, similar to the objects in the outer Solar System. It doesn’t have any gas or dust surrounding it, like comets do, and it’s stretched long and skinny, looking a bit like an oddly shaped pen. It’s thought to be about a quarter-mile long, and about 10 times longer than it is wide. That makes it unlike any asteroids seen in our Solar System, none of which are so elongated.

Here’s a video of the asteroid’s path through the solar system:

Um, folks…that looks like a rocket. How do we know this “asteroid” isn’t actually an ancient alien ship that’s become encrusted with rock over millions of years? Or an ancient weapon gone awry? We’ve all seen the first Star Trek movie, right? (I am only a little bit kidding about this.)

Update: Scientists — or at least one scientist who has a billionaire’s ear — think that’s there’s something a little odd about Oumuamua, so they’re going to check it for radio signals. Spoiler: they’re not going to find any, but wouldn’t it be fun if they did!?

Update: They listened and did not find any radio signals coming from Oumuamua.

Jimmy Iovine and most bomb record in the solar system

posted by Jason Kottke   Nov 15, 2017

While preparing for a conference talk/conversation I’m doing in Amsterdam this weekend, I was reading about the Golden Record that NASA sent along as a potential greeting from Earth to alien civilizations who might run across the Voyager probes in interstellar space millions of years from now. For the 40th anniversary of the Voyager launches, science writer Timothy Ferris (author of the Pulitzer-nominated Coming of Age in the Milky Way) wrote about the production of the Record for the New Yorker.

In the winter of 1976, Carl was visiting with me and my fiancee at the time, Ann Druyan, and asked whether we’d help him create a plaque or something of the sort for Voyager. We immediately agreed. Soon, he and one of his colleagues at Cornell, Frank Drake, had decided on a record. By the time nasa approved the idea, we had less than six months to put it together, so we had to move fast. Ann began gathering material for a sonic description of Earth’s history. Linda Salzman Sagan, Carl’s wife at the time, went to work recording samples of human voices speaking in many different languages. The space artist Jon Lomberg rounded up photographs, a method having been found to encode them into the record’s grooves. I produced the record, which meant overseeing the technical side of things. We all worked on selecting the music.

Carl Sagan was project director, Ann Druyan the creative director, and Ferris produced the Record. And the sound engineer for the Golden Record? I was surprised to learn: none other than Jimmy Iovine, who was recommended to Ferris by John Lennon.

I sought to recruit John Lennon, of the Beatles, for the project, but tax considerations obliged him to leave the country. Lennon did help us, though, in two ways. First, he recommended that we use his engineer, Jimmy Iovine, who brought energy and expertise to the studio. (Jimmy later became famous as a rock and hip-hop producer and record-company executive.)

Lennon, Springsteen, Tom Petty, Patti Smith, Stevie Nicks, Interscope, Dre, Snoop, Death Row Records, Eminem, Lady Gaga, Beats By Dre, Apple, *and* The Golden Record? Iovine is like the record industry’s Forrest Gump or something. How was this not in The Defiant Ones?

How to make an Extremely Large Telescope

posted by Jason Kottke   Nov 09, 2017

The Giant Magellan Telescope, currently under construction at the University of Arizona’s Mirror Lab, will be one of the first of a new class of telescopes called Extremely Large Telescopes. The process involved in fashioning the telescope’s seven massive mirrors is fascinating. This is one of those articles littered with mind-boggling statements at every turn. Such as:

“We want the telescope to be limited by fundamental physics — the wavelength of light and the diameter of the mirror — not the irregularities on the mirror’s surface,” says optical scientist Buddy Martin, who oversees the lab’s grinding and polishing operations. By “irregularities,” he’s talking about defects bigger than 20 nanometers — about the size of a small virus. But when the mirror comes out of the mold, its imperfections can measure a millimeter or more.

Precision of 20 nanometers on something more than 27 feet in diameter and weighing 17 tons? That’s almost unbelievable. In this video, Dr. Wendy Freedman, former chair of the board of directors for the GMT project, puts it this way:

The surface of this mirror is so smooth that if we took this 27-foot mirror and then spread it out, from coast-to-coast in the United States, east to west coast, the height of the tallest mountain on that mirror would be about 1/2 an inch. That’s how smooth this mirror is.

You need that level of smoothness if you’re going to achieve better vision than the Hubble:

With a resolving power 10 times that of the Hubble Space Telescope, the GMT is designed to capture and focus photons emanating from galaxies and black holes at the fringes of the universe, study the formation of stars and the worlds that orbit them, and search for traces of life in the atmospheres of habitable-zone planets.

The telescope has a price tag of $1 billion and should be operational within the the next five years in Chile.

Gorgeous computer-generated animation of a nebula

posted by Jason Kottke   Nov 07, 2017

Designed by Teun van der Zalm, Nebulae is a computer generated nebula set to atmospheric music by Lee Rosevere. Worth seeking out a large screen for viewing. Several of van der Zalm’s other videos are equally beautiful variations on the same theme.

The 100-megapixel Moon

posted by Jason Kottke   Nov 06, 2017

100 Megapixel Moon

Seán Doran used images from the Lunar Reconnaissance Orbiter to create this 100-megapixel image of the Moon (full 10000x10000 pixel image here). Phil Plait explains how Doran made the image:

LRO WAC images have a resolution of about 100 meters per pixel over a swath of about 60 km of lunar surface (using what’s called the pushbroom technique, similar to how a flatbed scanner works). They are usually taken straight down, toward the spacecraft nadir (the opposite of the zenith). To get the correct perspective for the Moon as a globe, Doran took the images, along with altimeter data, and mapped them onto a sphere. That way features near the edge look foreshortened, as they really do when you look at the entire Moon. He also used Apollo images to make sure things lined up. So the image isn’t exactly scientifically rigorous, but it is certainly spectacular.

The image is also available at Gigapan for easier exploration.

The Universe is much bigger than it is old

posted by Jason Kottke   Oct 20, 2017

In a Twitter thread, author Oliver Morton compares the physical scale of the Universe with its age (from the perspective of humans).

If a human life is 70 years long, there has been room for 200 million lives since the big bang, but 200 million humans, end to end, would reach just a bit further than the moon. If you had started walking towards the centre of the galaxy on the day of the big bang (had there been days, you, paths & galaxies), you would have got about 20 parsecs by now: just 0.25% of the way.

Maybe walking pace is the wrong metric. A nerve impulse travels around 70 times faster than a person walks. But even at the speed of thought, the age of the universe is too small for something to have reached the centre of the galaxy.

The situation is even worse when you choose another reference object, like UY Scuti, the largest known star. The red hypergiant is nearly 1.5 billion miles across and, because of its size and position near the center of the galaxy, is probably around 13 billion years old, just a few hundred million years younger than the age of the Universe itself.

Even if you use light as a marker, the size of Universe remains unfathomably immense. Over the course of the Universe’s lifetime, a photon could have travelled 13.8 billion light-years, just 15% of the current estimate of the Universe’s diameter of 93 billion light-years. See also what are the physical limits of humanity?

The Astronomy Photographer of the Year for 2017

posted by Jason Kottke   Oct 04, 2017

Astronomy Photo 2017

Astronomy Photo 2017

Astronomy Photo 2017

Put on by the Royal Observatory Greenwich, The Astronomy Photographer of the Year is the largest competition of its kind in the world. For the 2017 awards, more than 3800 photos were entered from 91 countries. It’s astounding to me that many of these were taken with telescopes you can easily buy online (granted, for thousands of dollars) rather than with the Hubble or some building-sized scope on the top of a mountain in Chile.

The photos above were taken by Andriy Borovkov, Alexandra Hart, and Kamil Nureev.

SpaceX wants to send people to Mars by 2024

posted by Jason Kottke   Sep 29, 2017

Spacex BFR

Elon Musk says SpaceX is on target to send cargo to Mars in 2022 and people in 2024. The way the company will do it is by focusing its resources on a new vehicle, the Interplanetary Transport System (codename: the BFR). That vehicle will be able to travel to Mars, but can also be used to generate revenue for the company through launching satellites, resupplying the ISS, and going to the Moon.

Musk also proposed a variety of new uses for the scaled-down rocket beyond just going to Mars. Supposedly, the ITS can be used to launch satellites, take cargo to the International Space Station, and even do lunar missions to set up a Moon base. SpaceX’s current Falcon 9 fleet is used to do a few of those things already, but Musk says eventually the company will turn to the ITS to do all of its space missions.

“We can build a system that cannibalizes our own products, makes our own products redundant, then all the resources we use for Falcon Heavy and Dragon can be applied to one system,” he said at the conference. Musk says the cost of launching cargo on the ITS will be fairly cheap, too, since the rocket and spaceship will be a fully reusable system — unlike the Falcon 9, which is only 70 to 80 percent reusable.

Musk also astoundingly asserted that the same rocket system could be used for long-distance travel on Earth.

He ended his talk with a pretty incredible promise: using that same interplanetary rocket system for long distance travel on Earth. Musk showed a demonstration of the idea on stage, claiming that it will allow passengers to take “most long distance trips” in just 30 minutes, and go “anywhere on Earth in under an hour” for around the same price of an economy airline ticket.

As they say, “huge if true”. Musk is like the sci-fi Oprah here: You get a electric car! And you get a trip to Mars! And you get a self-driving car! And you get a 30-minute Hyperloop trip from SF to LA! And you get a rocket shuttle from NYC to Mumbai in 43 minutes for $1200! Beeeeeeeeees!!!!

Solar system artwork featuring the precise locations of the planets on the day of your birth

posted by Jason Kottke   Sep 19, 2017

Solar System Birthday Map

Spacetime Coordinates sells prints, metal mementos, and t-shirts that feature the planets of the solar system in the exact locations they were in on the date of your birth (or other significant date). For their new Kickstarter campaign, they’re offering color prints.

While not as pretty as these prints, you can check what the solar system looked like for any date here.

When I was a kid, I spent far too many hours mucking around in Lotus 1-2-3 trying to make a spreadsheet to calculate how often all the planets in the solar system would line up with each other (disregarding their differing planes, particularly Pluto’s).1 I could never get it working. Turns out that a precise alignment has probably never occurred, nor will it ever. But all the planets are “somewhat aligned” every 500 years or so. Neat! (via colossal)

  1. I spent many more hours making a spreadsheet of every single baseball card I owned and how much it was worth, updated by hand from Beckett’s price guide. Time well spent?

The intricate wave structure of Saturn’s rings

posted by Jason Kottke   Sep 07, 2017

Saturn Waves by Cassini

On one of its final passes of Saturn, the Cassini probe captured this image of a wave structure in Saturn’s rings known as the Janus 2:1 spiral density wave. The waves are generated by the motion of Janus, one of Saturn’s smaller moons.

This wave is remarkable because Janus, the moon that generates it, is in a strange orbital configuration. Janus and Epimetheus (see “Cruising Past Janus”) share practically the same orbit and trade places every four years. Every time one of those orbit swaps takes place, the ring at this location responds, spawning a new crest in the wave. The distance between any pair of crests corresponds to four years’ worth of the wave propagating downstream from the resonance, which means the wave seen here encodes many decades’ worth of the orbital history of Janus and Epimetheus. According to this interpretation, the part of the wave at the very upper-left of this image corresponds to the positions of Janus and Epimetheus around the time of the Voyager flybys in 1980 and 1981, which is the time at which Janus and Epimetheus were first proven to be two distinct objects (they were first observed in 1966).

The photograph is also an optical illusion of sorts. The rings appear to be getting farther away in the upper lefthand corner but the plane of the photograph is actually parallel to the plane of the rings…it’s just that the wavelength of the density wave gets shorter from right to left.

Update: Here are those density waves converted into sound waves. The first set sounds like an accelerating F1 car.

The Moon 1968-1972

posted by Jason Kottke   Sep 01, 2017

Apollo 11 Flag

The Moon 1968-1972 is a slim volume of photographs from the Apollo missions to the Moon that took place over four short years almost 50 years ago. The book contains a passage by E.B. White taken from this New Yorker article about the Apollo 11 landing in 1969.

The moon, it turns out, is a great place for men. One-sixth gravity must be a lot of fun, and when Armstrong and Aldrin went into their bouncy little dance, like two happy children, it was a moment not only of triumph but of gaiety. The moon, on the other hand, is a poor place for flags. Ours looked stiff and awkward, trying to float on the breeze that does not blow. (There must be a lesson here somewhere.) It is traditional, of course, for explorers to plant the flag, but it struck us, as we watched with awe and admiration and pride, that our two fellows were universal men, not national men, and should have been equipped accordingly. Like every great river and every great sea, the moon belongs to none and belongs to all. It still holds the key to madness, still controls the tides that lap on shores everywhere, still guards the lovers who kiss in every land under no banner but the sky. What a pity that in our moment of triumph we did not forswear the familiar Iwo Jima scene and plant instead a device acceptable to all: a limp white handkerchief, perhaps, symbol of the common cold, which, like the moon, affects us all, unites us all.

Newly processed photos of Jupiter taken by NASA’s Juno probe

posted by Jason Kottke   Aug 31, 2017

Jupiter Juno

Jupiter Juno

Jupiter Juno

Seán Doran shared some recently processed photos of Jupiter that he worked on with Gerald Eichstädt. The photos were taken by NASA’s Juno probe on a recent pass by the planet. These are like Impressionist paintings…you could spend hours staring at the whirls & whorls and never find your way out. There are more images of Jupiter in Doran’s Flickr album, including this high-resolution shot that you can download for printing.

Infographic of the fascinating timeline of the far future

posted by Jason Kottke   Aug 17, 2017

Timeline of The Far Future

Timeline of the far future is one of my favorite pages on Wikipedia. It details what might happen to humanity, human artifacts, the Earth, the solar system, and the Universe from 10,000 years from now until long past the heat death of the Universe. Information is Beautiful has made a lovely infographic of the timeline.

Reading through the timeline is a glorious way to spend time…here are a few favorites I noticed this time around as well as some from my first post.

August 20, 10,663: “A simultaneous total solar eclipse and transit of Mercury.”

20,000 years: “The Chernobyl Exclusion Zone, the 1,000 sq mi area of Ukraine and Belarus left deserted by the 1986 Chernobyl disaster, becomes safe for human life.”

296,000 years: “Voyager 2 passes within 4.3 light-years of Sirius, the brightest star in the night sky.”

1 million years: “Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.”

1 million years: “On the Moon, Neil Armstrong’s ‘one small step’ footprint at Tranquility Base will erode by this time, along with those left by all twelve Apollo moonwalkers, due to the accumulated effects of space weathering.”

15.7 million: “Half-life of iodine-129, the most durable long-lived fission product in uranium-derived nuclear waste.”

100 million years: “Future archaeologists should be able to identify an ‘Urban Stratum’ of fossilized great coastal cities, mostly through the remains of underground infrastructure such as building foundations and utility tunnels.”

1 billion years: “Estimated lifespan of the two Voyager Golden Records, before the information stored on them is rendered unrecoverable.”

4 billion years: “Median point by which the Andromeda Galaxy will have collided with the Milky Way, which will thereafter merge to form a galaxy dubbed ‘Milkomeda’.”

7.59 billion years: The Earth and Moon are very likely destroyed by falling into the Sun, just before the Sun reaches the tip of its red giant phase and its maximum radius of 256 times the present-day value. Before the final collision, the Moon possibly spirals below Earth’s Roche limit, breaking into a ring of debris, most of which falls to the Earth’s surface.

100 billion years: “The Universe’s expansion causes all galaxies beyond the Milky Way’s Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe.”

Live TV coverage of Apollo 11 landing and moon walk

posted by Jason Kottke   Jul 20, 2017

Apollo 11 TV Coverage

48 years ago today, the lunar module from the Apollo 11 mission landed on the Moon. Later that same day, Neil Armstrong and Buzz Aldrin stepped out of the module, set foot on the surface, and went for a walk. And the entire world watched them do it. Live.

For the 40th anniversary of the landing in 2009, I put together a page where you can watch the original CBS News coverage of Walter Cronkite reporting on the Moon landing and the first Moon walk, synced to the present-day time. Just open this page in your browser and the coverage will start playing at the proper time. Here’s the schedule (all times EDT):

4:10:30 pm: Moon landing broadcast starts
4:17:40 pm: Lunar module lands on the Moon

4:20:15 pm: Break in coverage

10:51:27 pm: Moon walk broadcast starts
10:56:15 pm: First step on Moon
11:51:30 pm: Nixon speaks to the Eagle crew
12:00:30 am: Broadcast end (on July 21)

Here’s what I wrote when I launched the project:

If you’ve never seen this coverage, I urge you to watch at least the landing segment (~10 min.) and the first 10-20 minutes of the Moon walk. I hope that with the old time TV display and poor YouTube quality, you get a small sense of how someone 40 years ago might have experienced it. I’ve watched the whole thing a couple of times while putting this together and I’m struck by two things: 1) how it’s almost more amazing that hundreds of millions of people watched the first Moon walk *live* on TV than it is that they got to the Moon in the first place, and 2) that pretty much the sole purpose of the Apollo 11 Moon walk was to photograph it and broadcast it live back to Earth.

This is one of my favorite projects I’ve ever done, and it almost didn’t happen this year. I woke up this morning assuming it was just going to work again, just like it had the previous 8 years, but a bit of testing revealed that YouTube had discontinued the API I was using to display and time the videos. I wasn’t sure I had the JavaScript chops to fix it in time for the big show this afternoon. Luckily, I was able to solicit some help on Twitter and as the internet continues to be absolutely amazing, Geoff Stearns fixed the problem. As he said in his tweet, Stearns works for Google and wrote the YouTube API that had been discontinued, which is a bit like Marshall McLuhan popping out from behind a poster in Annie Hall, but instead of saying “you know nothing of my work”, he says “I’m gonna fix this up real quick”. Reader, it took him 14 minutes from saying “I’ll help” to posting the solution, and I’d bet half of that time was spent running to the fridge for a LaCroix and selecting the proper coding playlist on Spotify. So big thanks to Geoff for making this happen today! And thanks also to Brian Seward, who landed a solution in my inbox a bit after Geoff’s.

Oh, and no more Flash! So it’ll work on any modern browser with no plugins. But I tested it on my phone and it still doesn’t seem to work properly there…the video loads but doesn’t autoplay. Something to improve for next year!

NASA Apollo Saturn V Lego set

posted by Jason Kottke   Jun 22, 2017

Apollo 11 Lego

Lego has introduced an Apollo Saturn V rocket set, complete with lunar lander and 3 astronaut minifigs.

Packed with authentic details, it features 3 removable rocket stages, including the S-IVB third stage with the lunar lander and lunar orbiter. The set also includes 3 stands to display the model horizontally, 3 new-for-June-2017 astronaut microfigures for role-play recreations of the Moon landings, plus a booklet about the manned Apollo missions and the fan designers of this educational and inspirational LEGO Ideas set.

Three rocket stages! And look at this lander:

Apollo 11 Lego

Amazing detail: the set contains 1969 pieces, which is the year that the Apollo 11 astronauts landed on the Moon. I typically leave the Lego building to my kids, but I might have to make an exception for this. (via mike)

The view from Mars

posted by Jason Kottke   Jun 21, 2017

Mars Opportunity 2017

NASA’s Opportunity rover started exploring the surface of Mars in January 2004. Its mission was supposed to last about 90 days, but over 13 years later, Opportunity is still rolling around the red planet, doing science and taking photos. Jason Major processed a few of Opportunity’s most recent snaps of the Endeavour Crater and they’re just wonderful. I’m especially taken with the one included above…it belongs in a museum!

Vivid new images and flyby videos of Jupiter

posted by Jason Kottke   May 30, 2017

Jupiter South Pole Juno

NASA’s Juno spacecraft is currently orbiting around Jupiter and taking some of the best photos and scientific measurements we’ve seen of the solar system’s largest planet. The photo above is of Jupiter’s south pole, gathering point for massive cyclones.

Early science results from NASA’s Juno mission to Jupiter portray the largest planet in our solar system as a complex, gigantic, turbulent world, with Earth-sized polar cyclones, plunging storm systems that travel deep into the heart of the gas giant, and a mammoth, lumpy magnetic field that may indicate it was generated closer to the planet’s surface than previously thought.

“We are excited to share these early discoveries, which help us better understand what makes Jupiter so fascinating,” said Diane Brown, Juno program executive at NASA Headquarters in Washington. “It was a long trip to get to Jupiter, but these first results already demonstrate it was well worth the journey.”

Using data and photos from Juno, Gerald Eichstädt and Seán Doran have created these videos that approximate what it might look like flying by Jupiter in a spacecraft.

Wonderful.