kottke.org posts about space
Sometimes I forget what a big space dork I am and then a comet comes along and I’m texting everyone I know to get their asses outside to see the amazing sky thing. Anyway, what I’m trying to say is that this is a Comet Neowise fan blog now. After seeing it last night in my backyard,1 I went looking for some of the best photos of it.
My favorite so far is from Thierry Legault (website) of the comet over Mont-Saint-Michel in France.

In Focus’s Alan Taylor shared a selection of photographs from around the world, including this one from Mika Laureque.

Colossal featured this shot by Lester Tsai of Neowise directly over Mt. Hood. Dang.

More Comet Neowise photography can be see at USA Today, NASA, Sky & Telescope, and Astronomy Picture of the Day (1, 2, 3, 4, 5).
If you live in the US and Canada, you might have the opportunity to check out Comet NEOWISE over the next few weeks with a good pair of binoculars or even with the naked eye. EarthSky has the skinny.
By mid-July (around July 12-15), the comet will also become visible at dusk (just after sunset), low in the northwest horizon, for observers in the mid- and northern U.S. How can it be visible in both dawn and dusk? The answer is that the comet is now very far to the north on the sky’s dome. For those at latitudes like those in the southern U.S. (say, around 30 degrees north latitude), the comet is very nearly but not quite circumpolar, that is, it’s nearly in the sky continually, but it isn’t quite … that’s why we at southerly latitudes will have a harder time spotting it in the evening.

It appears this comet is holding up better than Comet ATLAS did earlier in the year. Here’s a beautiful time lapse of NEOWISE rising over the Adriatic Sea in the early dawn:
Watch video on YouTube.
And a time lapse of the comet from the International Space Station (it starts rising around the 3-minute mark):
Watch video on YouTube.

October 31, 2000 was the last day all humans were together on Earth. That day, the rocket containing the crew of Expedition 1 lifted off from the Baikonur Cosmodrome in Kazakhstan and carried them to the International Space Station for a long-term stay. Fittingly, the mission left from the same launchpad that was used to launch Yuri Gagarin into space on April 2, 1961, which was the first time in history that all humans were not together on Earth. Ever since the Expedition 1 crew docked, there’s been an uninterrupted human presence on the ISS, which may continue until 2028 or 2030, by which time there may be humans on the Moon or Mars on a permanent basis. Will humans ever be only Earth-bound again?
BTW, I guess you could argue that the ISS isn’t really separate enough from Earth or that since regular commercial airplane flights began, humans have been separate from the Earth. You could also say that at any given time, thousands of people are in the air while jumping and therefore not on the Earth with the rest of us. I don’t find any of those arguments meaningful. Perhaps someday if space travel is more routine โ “just popped up into orbit to visit my daughter” โ and the human population is much more distributed, these same distinctions won’t hold, but for now the ISS is definitely apart from the Earth in a way that flying or jumping are not.
Watch video on YouTube.
For the past 10 years now, NASA’s Solar Dynamics Observatory (SDO) has been capturing an image of the Sun every 0.75 seconds. To celebrate, NASA created this 61-minute time lapse video of all ten years, with each second representing one day in the Sun’s life. They have helpfully highlighted some noteworthy events in the video, including solar flares and planetary transits.
12:24, June 5, 2012 โ The transit of Venus across the face of the Sun. Won’t happen again until 2117.
13:50, Aug. 31, 2012 โ The most iconic eruption of this solar cycle bursts from the lower left of the Sun.
43:20, July 5, 2017 โ A large sunspot group spends two weeks crossing the face of the Sun.
See also Gorgeous Time Lapse of the Sun.
In a letter recently published in a new book, A Reluctant Icon: Letters to Neil Armstrong, a teacher wrote a letter to the first human to set foot on the Moon accusing him of making the whole thing up.

To which Armstrong replied:

(via the excellent Letters of Note)
Watch video on YouTube.
NASA and SpaceX are scheduled to launch two astronauts into orbit this afternoon from the United States for the first time in nine years. The launch is scheduled to take place at 4:33 p.m. EDT. We’ll be watching for sure!
SpaceX is targeting Wednesday, May 27 for Falcon 9’s launch of Crew Dragon’s second demonstration (Demo-2) mission from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center in Florida. This test flight with NASA astronauts Bob Behnken and Doug Hurley on board the Dragon spacecraft will return human spaceflight to the United States.
The mission is also the first time a private company will carry humans into orbit. You can watch the launch in the stream above with commentary (the coverage has already started โ the astronauts just suited up and are on their way to launchpad 39A and now Kelly Clarkson is singing the National Anthem from her house) or with just the audio feed from Mission Control. And you can read more about the mission here.
Update: The launch got scrubbed for today โ poor weather conditions. The next launch window is Saturday, May 30 at 3:22pm ET.
Watch video on YouTube.
Last year I posted a pair of videos showing a sky-stabilized rotation of the Earth around the starry sky. Because the Earth is our vantage point, we’re not used to seeing this view and it’s pretty trippy.
Now Bartosz Wojczyลski has created a video showing full-day rotation of the Earth with footage shot in Namibia. The rotation is sped up to take only 24 seconds and is repeated 60 times to simulate about 2 months of rotation. I find this very relaxing to watch, like I’m riding in a very slow clothes dryer.
See also The Entire Plane of the Milky Way Captured in a Single Photo.
Watch video on YouTube.
Using thousands of original photographs taken by astronauts during the Apollo missions, motion designer Christian Stangl and composer Wolfgang Stangl worked for 18 months to create this animated short film depicting a flight to the Moon, culminating in a landing and the exploration of the surface. (via moss & fog)


Watch video on YouTube.
In collaboration with NASA and the Lunar and Planetary Institute, the USGS has released the first complete geological map of the Moon’s surface.
This new work represents a seamless, globally consistent, 1:5,000,000-scale geologic map derived from the six digitally renovated geologic maps (see Source Online Linkage below). The goal of this project was to create a digital resource for science research and analysis, future geologic mapping efforts, be it local-, regional-, or global-scale products, and as a resource for the educators and the public interested in lunar geology.
Strange Maps has more information on how the map came to be and what it shows.
The map was created by the U.S. Geological Service’s Astrogeology Science Center in Flagstaff, Arizona. In collaboration with NASA and the Lunar and Planetary Institute, it combined six ‘regional’ maps of the Moon made during the Apollo era (1961-1975) with input from more recent unmanned lunar missions.
This included data on the polar regions from NASA’s Lunar Orbiter Laser Altimeter (LOLA) and close-ups of the equatorial zone from the Japanese Space Agency’s recent SELENE mission.
The two images above show the entire map and a detailed view of a single area (which includes the landing sites of 3 Apollo missions) while the video shows a rotating globe version of the map.
Last month, I told you about Comet ATLAS, which at that time looked capable of putting on a real show in the night sky.
Except, since its discovery, the comet has been brightening at an almost unprecedented speed. As of March 17, ATLAS was already magnitude +8.5, over 600 times brighter than forecast. As a result, great expectations are buzzing for this icy lump of cosmic detritus, with hopes it could become a stupendously bright object by the end of May.
It turns out the increase in brightness was fleeting โ and possibly due to the comet breaking apart. In the past week, the Hubble Space Telescope has gotten two good looks at the disintegrating comet, identifying that the main mass has broken into about 30 fragments.


“This is really exciting โ both because such events are super cool to watch and because they do not happen very often. Most comets that fragment are too dim to see. Events at such scale only happen once or twice a decade,” said the leader of a second Hubble observing team, Quanzhi Ye, of the University of Maryland, College Park.
The results are evidence that comet fragmentation is actually fairly common, say researchers. It might even be the dominant mechanism by which the solid, icy nuclei of comets die. Because this happens quickly and unpredictably, astronomers remain largely uncertain about the cause of fragmentation. Hubble’s crisp images may yield new clues to the breakup. Hubble distinguishes pieces as small as the size of a house. Before the breakup, the entire nucleus may have been no more than the length of two football fields.
Watch video on YouTube.
I do not know if hearing about other people’s quarantine experiences makes going through one yourself any easier, but the story of how NASA sequestered the returning Apollo 11 astronauts away from the rest of the world for 21 days is interesting for other reasons as well. The worry was that some sort of “moon bug” or “lunar plague” was going to make its way from the Moon to the Earth in the spacecraft or the astronauts’ bodies.
From the moment the Apollo 11 astronauts arrive back on earth from their epochal visit to the moon, they will be treated not as heroes but as bearers of the most virulent, devastating plague the world has ever known.
So NASA quarantined Armstrong, Aldrin, and Collins in a series of specially designed suits and environments until August 10, 1969. At one point, the three of them lived in a modified Airstream trailer in which the air pressure was lower on the inside than outside so if there was a leak, air would rush into the trailer, not out. Armstrong even celebrated a birthday in quarantine.
After Apollo 11, NASA did similar quarantines for 12 and 14 but abandoned them after that because they figured it was safe.
Oh, and if you were curious about the Soyuz launch yesterday that sent three astronauts to the ISS and how they were going to mitigate the chances of sending any SARS-CoV-2 up there, crews on all missions are subject to a mandatory 2 week quarantine before they leave (according to this press release).
Back in late December, a new comet called Comet ATLAS (or C/2019 Y4) was discovered by a robotic astronomical survey on the lookout for objects that may strike the Earth. Don’t worry, Comet ATLAS isn’t going to hit us, but it has a chance to put on quite a show.1 It didn’t seem like much at first, but since its discovery Comet ATLAS has gotten brighter much faster than scientists have expected.
When astronomers first spotted Comet ATLAS in December, it was in Ursa Major and was an exceedingly faint object, close to 20th magnitude. That’s about 398,000 times dimmer than stars that are on the threshold of naked-eye visibility. At the time, it was 273 million miles (439 million kilometers) from the sun.
But comets typically brighten as they approach the sun, and at its closest, on May 31, Comet ATLAS will be just 23.5 million miles (37.8 million km) from the sun. Such a prodigious change in solar distance would typically cause a comet to increase in luminosity by almost 11 magnitudes, enough to make ATLAS easily visible in a small telescope or a pair of good binoculars, although quite frankly nothing really to write home about.
Except, since its discovery, the comet has been brightening at an almost unprecedented speed. As of March 17, ATLAS was already magnitude +8.5, over 600 times brighter than forecast. As a result, great expectations are buzzing for this icy lump of cosmic detritus, with hopes it could become a stupendously bright object by the end of May.
But the brightening could also be a sign that the comet is ejecting a lot of material because it’s burning itself out, so grain of salt. But if keeps brightening at a good pace, it could be visible during the day in the northern hemisphere.
If Atlas manages to remain intact, some in the field have suggested it could grow from magnitude +1 to possibly -5. At the brightest extreme, it could be visible even during the day.
The location of the comet is also notable-unlike more recent comets, it will be best viewed in the Northern Hemisphere.
Chuck Ayoub recently captured the comet arcing across the night sky with his backyard astrophotography rig:
Watch video on YouTube.
Oh I hope Comet ATLAS can keep it together. I vividly remember going outside in rural Wisconsin darkness to see the tail of Comet Hyakutake stretch halfway across the sky. One of the most amazing things I’ve ever seen.
Update: It looks as though Comet ATLAS will not be dazzling naked-eye observers later this spring โ the comet seems to have broken into 3 or 4 pieces as it nears the Sun.


Late last year, NASA’s Curiosity rover took over a thousand photos of the Martian landscape while exploring a mountainside. NASA stitched the photos together and recently released this 1.8 gigapixel panorama of Mars (along with a mere 650 megapixel panorama, pictured above). Here’s a version you can pan and zoom:
And a narrated video of the panorama:
Watch video on YouTube.
Both panoramas showcase “Glen Torridon,” a region on the side of Mount Sharp that Curiosity is exploring. They were taken between Nov. 24 and Dec. 1, when the mission team was out for the Thanksgiving holiday. Sitting still with few tasks to do while awaiting the team to return and provide its next commands, the rover had a rare chance to image its surroundings from the same vantage point several days in a row.
I like how NASA is casually suggesting that the rover is just kinda taking some vacation snaps while waiting on friends.
Universe Sandbox is a interactive space & gravity simulator that you can use to play God of your own universe.
Watch video on YouTube.
You can create star systems: “Start with a star then add planets. Spruce it up with moons, rings, comets, or even a black hole.” You can collide planets and stars or simulate gravity: “N-body simulation at almost any speed using Newtonian mechanics.” You can model the Earth’s climate, make a star go supernova, or ride along on space missions or see historical events.
I found Universe Sandbox after watching this video about what would happen if the Earth got hit by a grain of sand going 99.9% the speed of light (spoiler: not much). This game/simulator/educational tool is only $30 but I fear that if I bought it, I would never ever leave the house again.
The Story Time from Space program aims to promote language and STEM literacy by having astronauts read educational bedtime books from low-Earth orbit on the International Space Station to kids on Earth. Here’s astronaut Kate Rubins reading Rosie Revere, Engineer:
Watch video on YouTube.
And Ada Twist, Scientist read by Serena Auรฑรณn-Chancellor:
Watch video on YouTube.
What a cool idea. Check out the rest of the available videos in their library.
Watch video on YouTube.
In this video from Wired’s 5 Levels series, NASA astronomer Varoujan Gorjian explains the concept of black holes to five different people, ranging from a five-year-old to a college student to a Caltech astrophysicist.
A research astronomer at NASA’s Jet Propulsion Laboratory, Grojian specializes in โ and I’d just like to pause here to emphasize that this is the official title of his research group at JPL โ the structure of the universe. Which means the guy not only knows about event horizons and gravitational lensing but stuff like tidal forces (what!), x-ray binaries (hey now!), and active galactic nuclei (oh my god!). Seriously, the guy’s knowledge of black holes is encyclopedic.
Gorjian lost me somewhere in the middle of his conversation with the grad student.
Backyard astronomer Andrew McCarthy has created some arresting images of various objects in the sky, including galaxies, planets, the Sun, and nebulas. Perhaps his favorite subject is the Moon and for one of his first images of 2020, he combined 100,000 photos to make this image of the first quarter Moon.

Some detail:

*low whistle* McCarthy uses some digital darkroom techniques to bump up the dynamic range, which he explained in the comments of a similar image.
The natural colors of the moon were brought out here with minor saturation adjustments, but those colors are completely real and what you could see if your eyes were more sensitive. I find the color really helps tell the story of how some of these features formed billions of years ago.
In one of his Instagram Stories, he shows how he photographs the Moon, including dealing with temperature changes over the course of the session โ “when it’s cold, the telescope shrinks, and the focus changes”.
McCarthy sells digital copies of his images (as wallpaper or to print out) as well as prints. (via moss & fog)
Watch video on YouTube.
Before the holidays, NASA announced their plan for going back to the Moon by 2024.
With the Artemis program, NASA will land the first woman and next man on the Moon by 2024, using innovative technologies to explore more of the lunar surface than ever before. We will collaborate with our commercial and international partners and establish sustainable exploration by 2028. Then, we will use what we learn on and around the Moon to take the next giant leap โ sending astronauts to Mars.
The plan involves many supply runs and a small space station orbiting the Moon so that things like rovers and lunar landers are in place when manned missions need to land on the Moon or even continue on to Mars. You can check out all of the details on NASA’s website.
Watch video on YouTube.
This 12-minute animated video is a tour of all of the different kinds of things “out there” in the universe (as opposed to matter and structures smaller than, say, a human being).
This video explores all of the things in the Universe from our Earth and local Solar System, out to the Milky Way Galaxy and looks at all of the different kinds of stars from Brown Dwarfs to Red Supergiant Stars. Then to the things they explode into like white dwarfs, neutron stars and black holes. Then we look at all the other kinds of galaxy in the universe, blazars, quasars and out to the cosmic microwave background and the big bang. It covers most of the different things that we know about in the Universe.
A poster of the final drawing is available here.
When Neil Armstrong and Buzz Aldrin landed safely on the Moon in July 1969, President Richard Nixon called them from the White House during their moonwalk to say how proud he was of what they had accomplished. But in the event that Armstrong and Aldrin did not make it safely off the Moon’s surface, Nixon was prepared to give a very different sort of speech. The remarks were written by William Safire and recorded in a memo called In Event of Moon Disaster.
Fifty years ago, not even Stanley Kubrick could have faked the Moon landing. But today, visual effects and techniques driven by machine learning are so good that it might be relatively simple, at least the television broadcast part of it.1 In a short demonstration of that technical supremacy, a group from MIT has created a deepfake version of Nixon delivering that disaster speech. Here are a couple of clips from the deepfake speech:
Watch video on YouTube.
Fate has ordained that the men who went to the moon to explore in peace will stay on the moon to rest in peace.
The full film is being shown at IDFA DocLab in Amsterdam and will make its way online sometime next year.
The implications of being able to so convincingly fake the televised appearance of a former US President are left as an exercise to the reader. (via boing boing)
Update: The whole film is now online. (thx, andy)
Astronomers are expecting a particularly strong meteor storm tonight visible from parts of Europe, Africa, North America, and South America that could produce meteors at a rate of 400/hour or more. The storm’s radiant will be centered right around the constellation of Monoceros (that’s the unicorn, which makes this a very 2019 event). Just find Orion in the eastern sky and look a bit down and to the left, right where the red patch is:

If you’re on the east coast of the US and the sky is clear tonight, you should head outside around 11:15pm EST. And be prompt…the storm’s peak activity will last 15-40 minutes. I’m going to see if Night Mode on my iPhone 11 Pro can capture any of the action…
See also the time I saw a boomerang meteor explode like a firework in the night sky. (thx, megan)
I love rocket launches. They are loud, carry cool things into space, and last a surprisingly long time considering how fast the rocket is already traveling when it clears the tower. But I think we’re going to look back on this era of space travel and marvel that launches & rockets were our only means of getting things into and around space (planetary gravity assists notwithstanding). We’re already moving in that direction; the initial tests of a space sail inspired by Carl Sagan have been promising. Another space propulsion idea is to use spinning space tethers to whip smaller, slower space vehicles from relatively low altitudes to higher orbits or even to the Moon, Mars, or beyond. This video from Kurzgesagt explains how these tethers work and what we could do with them.
Watch video on YouTube.
I believe Neal Stephenson wrote about space tethers (or something very similar) in Seveneves.
The latest video from Kurzgesagt is a short primer on neutron stars, the densest large objects in the universe.
Watch video on YouTube.
The mind-boggling density of neutron stars is their most well-known attribute: the mass of all living humans would fit into a volume the size of a sugar cube at the same density. But I learned about a couple of new things that I’d like to highlight. The first is nuclear pasta, which might be the strongest material in the universe.
Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the surface. Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna.
Simulations have demonstrated that nuclear pasta might be some 10 billion times stronger than steel.
The second thing deals with neutron star mergers. When two neutron stars merge, they explode in a shower of matter that’s flung across space. Recent research suggests that many of the heavy elements present in the universe could be formed in these mergers.
But how elements heavier than iron, such as gold and uranium, were created has long been uncertain. Previous research suggested a key clue: For atoms to grow to massive sizes, they needed to quickly absorb neutrons. Such rapid neutron capture, known as the “r-process” for short, only happens in nature in extreme environments where atoms are bombarded by large numbers of neutrons.
If this pans out, it means that the Earth’s platinum, uranium, lead, and tin may have originated in exploding neutron stars. Neat!
This is what our night sky is going to look like in 3.9 billion years:

Wow! So what’s going on here? Using data from the Hubble Space Telescope, astronomers at NASA have predicted that our own Milky Way galaxy and the nearby Andromeda galaxy (M31) will collide about 4 billion years from now. As part of the announcement from 2012, they produced a video of what the collision would look like and a series of illustrations of what our sky will look like during the collision process.1
In 2 billion years, Andromeda will be noticeably closer in the sky:

By 3.75 billion years, it will fill a significant chunk of the sky. And the Milky Way will begin to bend due to the pull of gravity from Andromeda:

In about 3.85 billion years, the first close approach will trigger the formation of new stars, “which is evident in a plethora of emission nebulae and open young star clusters”:

Star formation continues 3.9 billion years from now. Could you imagine actually going outside at night and seeing this? It’s like a nightly fireworks display:

After the galaxies pass by each other in 4 billion years, they are stretched and warped by gravity:

In 5.1 billion years, Andromeda and the Milky Way will come around for a second close pass, their galactic cores blazing bright in the night sky:

And finally, in 7 billion years, the two galaxies will have merged into a single elliptical galaxy nicknamed Milkdromeda:

Interestingly, despite the galactic collision and the dazzling view from Earth, it’s extremely unlikely that any individual stars will collide because of the sheer amount of empty space in galaxies.

Inspired by some photos taken by the Hubble Space Telescope, Margaret Nazon began in 2009 to make beaded artworks of stars, galaxies, planets, and nebula. I love her representation of the Milky Way, pictured above. Nazon grew up in a First Nation community in Canada’s Northwest Territories and in this interview she talks about using traditional materials for her cosmic drawings.
I consider my art to be “abstract.” Aboriginal people have used animal skins, bones, seeds, quills and rocks for decoration, and I figured it would fit in my artwork. I was given buttons made of caribou bones as a gift and I decided I should try to incorporate a solid piece of bone into one of my galaxy pictures. Viewers loved that. I spent last December in Salt Spring Island B.C. One of my friends asked if I was going to incorporate B.C. rocks or shells in my work and I thought that was a great idea. I started receiving rocks and shells as inspiration. Just recently a Gwich’in friend gave me willow seeds to use. The Gwich’in people used to use willow seeds to decorate their clothing.
(via brain pickings)
With the launch of Sputnik in 1957, the Soviet Union kicked off the Space Race and for the first several years (arguable up until the Moon landing in ‘69), they dominated the United States. One of their “firsts” in the early years was taking the first photo of the far side of the Moon 60 years ago this month.

Astronomer Kevin Hainline wrote a fascinating account of how the Soviet’s Luna 3 spacecraft took the photo and then transmitted it back to Earth.
First off, Luna 3, the first three-axis stabilized spacecraft, had to reach the Moon to take the pictures, and it had to use a little photocell to orient towards the Moon so that now, while stabilized, it could take the pictures. Which it did. On PHOTOGRAPHIC FILM.
And it gets WILDER because these photos were then moved to a little CHEMICAL PLANT to DEVELOP AND DRY THEM. That’s right, Luna 3 had a little 1 Hour Photo inside. Now you’re thinking, well, how do you get those actual photos back to the Earth?
How indeed? The spacecraft faxed the photos to Earth. A few years later, when the Soviets’ Luna 9 took the first photo on the Moon’s surface and went to transmit it back to Earth, a group in the UK was able to read the signal with a fax machine and the resulting image was published the next day on the front page of the Daily Express.
Director Christian Stangl and composer Wolfgang Stangl used millions of photos (that’s right, millions!) taken by the ESA’s Rosetta spacecraft of Comet 67P/Churyumov-Gerasimenko to make this short video that makes the mission feel like sci-fi a la Alien or District 9.
Randall Munroe’s new book, How To: Absurd Scientific Advice for Common Real-World Problems, just came out and Wired has a lengthy excerpt: How to Mail a Package (From Space).

Getting an object down to Earth from the International Space Station is easy: you can just toss it out the door and wait. Eventually, it will fall to Earth.
There’s a very small amount of atmosphere at the ISS’s altitude. It’s not much, but it’s enough to produce a tiny but measurable amount of drag. This drag sooner or later causes objects to slow down, fall into a lower and lower orbit, and eventually hit the atmosphere and (usually) burn up. The ISS also feels this drag; it uses thrusters to compensate, periodically boosting itself up into a higher orbit to make up for lost altitude. If it didn’t, its orbit would gradually decay until it fell back to Earth.
This shipping method has two big problems: First, your package will burn up in the atmosphere before it ever reaches the ground. And second, if it does survive, you’ll have no way to know where it will land. To deliver your package, you’ll have to solve both these problems.
Fun fact: a piece of paper drifting down from orbit might move slowly enough not to burn up on reentry.
Watch video on YouTube.
SpaceX took its Starhopper rocket out for a little test run in Texas the other day, taking off and then landing about 300 feet away after reaching a height of about 500 feet. Spacehopper is a prototype of the company’s Starship spacecraft & rocket, which they plan to fly to and land on the Moon and Mars.
I’ve written about the wonder of SpaceX’s reusable rockets before, but the Starhopper test in particular seems like some deeply sci-fi shit, like what society imagined future space travel would look like. The ship looks and moves like something straight out of a late 60s Dr. Who serial.

A photo of Jupiter taken by the Hubble Space Telescope in late June was recently released by NASA. Among other things, it shows just how much smaller, redder, and rounder the Great Red Spot has gotten.
The Great Red Spot is a towering structure shaped like a wedding cake, whose upper haze layer extends more than 3 miles (5 kilometers) higher than clouds in other areas. The gigantic structure, with a diameter slightly larger than Earth’s, is a high-pressure wind system called an anticyclone that has been slowly downsizing since the 1800s. The reason for this change in size is still unknown.
The spot was “once big enough to swallow three Earths with room to spare” but has been shrinking steadily since a brief expansion in the 1920s. As the storm contracts, it has stretched up into the Jovian atmosphere.
Because the storm has been contracting, the researchers expected to find the already-powerful internal winds becoming even stronger, like an ice skater who spins faster as she pulls in her arms.
Instead of spinning faster, the storm appears to be forced to stretch up. It’s almost like clay being shaped on a potter’s wheel. As the wheel spins, an artist can transform a short, round lump into a tall, thin vase by pushing inward with his hands. The smaller he makes the base, the taller the vessel will grow.
Recently amateur astronomers have observed “flakes” or “blades” coming off of the storm and dissipating into the larger atmosphere, a formerly rare phenomenon that now seems more common.
The Hubble photographs also yielded a rotating view of the planet as well as a very cool stretched-out photo of the surface:
Watch video on YouTube.
Newer posts
Older posts
Socials & More