Advertise here with Carbon Ads

This site is made possible by member support. 💞

Big thanks to Arcustech for hosting the site and offering amazing tech support.

When you buy through links on kottke.org, I may earn an affiliate commission. Thanks for supporting the site!

kottke.org. home of fine hypertext products since 1998.

🍔  💀  📸  😭  🕳️  🤠  🎬  🥔

kottke.org posts about Sean Doran

Blackstar — The Sun In A New Light

Blackstar is a relaxing and meditative 45-minute video of the Sun made by Seán Doran using footage from the Solar Dynamics Observatory. Instead of the familiar yellow, Doran has chosen to outfit our star in vivid blue and black, which lends the video a sort of alien familiarity. This looks absolutely stunning in 4K.


High-Res View of a Martian Crater

Seán Doran strikes again. In this short flyover rendered in 8K resolution by Doran, we’re treated to a detailed look at a crater on Mars. The imagery is from the HiRISE camera onboard the Mars Reconnaissance Orbiter. Beautiful — worth taking a second or third pass to catch all the details.


One Month of the Sun

Seán Doran took 78,846 frames of data compiled by the Solar Dynamics Observatory over the course of a month and made this absolutely fantastic time lapse of the Sun slowly rotating and burning and flaring. Put this on the biggest, high-resolution screen you can and pretend you’re in the solar observation room of the Icarus II in Sunshine.

See also A Decade of Sun and Gorgeous Time Lapse of the Sun. (via colossal)


Earthrise

Last month I shared a video of the Earth rising over the surface of the Moon captured by Japan’s Kaguya orbiter. It’s a good clip but quite short and over-narrated. Seán Doran took several Earthrise & Earthset sequences filmed by Kaguya, remastered & upsampled them to 4K resolution, and stitched them together into this wonderful video, set to music by Jesse Gallagher. One of the sequences, which begins around the 5-minute mark, captures a solar eclipse of the Sun by the rising Earth. I hadn’t seen this footage before and had to pick my jaw up off the floor — absolutely spectacular.


Orbit the Moon in Realtime

Using images from the Kaguya orbiter, Seán Doran has constructed a 4-hour realtime orbit of the Moon. Feel free to pair with your favorite piece of relaxing music for a meditative viewing experience.

See also another video by Doran: An Incredible Video of What It’s Like to Orbit the Earth for 90 Minutes.


An Incredible Video of What It’s Like to Orbit the Earth for 90 Minutes

This is easily the most awe-inspiring and jaw-dropping thing I’ve seen in months. In its low Earth orbit ~250 miles above our planet, the International Space Station takes about 90 minutes to complete one orbit of the Earth. Fewer than 600 people have ever orbited our planet, but with this realtime video by Seán Doran, you can experience what it looks like from the vantage point of the IIS for the full 90 minutes.

The video is in 4K so find the largest monitor/TV you can, turn up the sound, watch for awhile (even if it’s only for a few minutes), and see if you don’t experience a little bit of the Overview Effect, what NASA astronaut Kathryn Sullivan described as a life-altering experience:

I first saw the earth — the whole earth — from the shuttle Challenger in 1984. The view takes your breath away and fills you with childlike wonder. An incredibly beautiful tapestry of blue and white, tan, black and green seems to glide beneath you at an elegant, stately pace. But you’re actually going so fast that the entire map of the world spins before your eyes with each 90-minute orbit. After just one or two laps, you feel, maybe for the first time, like a citizen of a planet.

We could use more global citizenry these days.


The 100-megapixel Moon

100 Megapixel Moon

Seán Doran used images from the Lunar Reconnaissance Orbiter to create this 100-megapixel image of the Moon (full 10000x10000 pixel image here). Phil Plait explains how Doran made the image:

LRO WAC images have a resolution of about 100 meters per pixel over a swath of about 60 km of lunar surface (using what’s called the pushbroom technique, similar to how a flatbed scanner works). They are usually taken straight down, toward the spacecraft nadir (the opposite of the zenith). To get the correct perspective for the Moon as a globe, Doran took the images, along with altimeter data, and mapped them onto a sphere. That way features near the edge look foreshortened, as they really do when you look at the entire Moon. He also used Apollo images to make sure things lined up. So the image isn’t exactly scientifically rigorous, but it is certainly spectacular.

The image is also available at Gigapan for easier exploration.