homeabout kottke.orgarchives + tagsmembership!
aboutarchives + tagsmembership!

kottke.org posts about Albert Einstein

LIGO’s gravitational wave data may contradict relativity

posted by Jason Kottke   Dec 12, 2016

Earlier this year, the LIGO experiment detected evidence of gravitational waves. Now the evidence shows that those waves may have echoes, which would contradict one of the tentpoles of modern physics, the general theory of relativity.

It was hailed as an elegant confirmation of Einstein’s general theory of relativity — but ironically the discovery of gravitational waves earlier this year could herald the first evidence that the theory breaks down at the edge of black holes. Physicists have analysed the publicly released data from the Laser Interferometer Gravitational-Wave Observatory (LIGO), and claim to have found “echoes” of the waves that seem to contradict general relativity’s predictions.

The echoes could yet disappear with more data. If they persist, the finding would be extraordinary. Physicists have predicted that Einstein’s hugely successful theory could break down in extreme scenarios, such as at the centre of black holes. The echoes would indicate the even more dramatic possibility that relativity fails at the black hole’s edge, far from its core.

If the echoes go away, then general relativity will have withstood a test of its power — previously, it wasn’t clear that physicists would be able to test their non-standard predictions.

We Work Remotely

Albert Einstein, civil rights advocate

posted by Jason Kottke   Aug 22, 2016

Einstein Lincoln University

In 1946, Albert Einstein, who had come to the US in 1933 and stayed to become a citizen due to Adolf Hitler’s rise to power in Germany, wrote a magazine article titled The Negro Question. In it, he called the prejudice against black Americans a “deeply entrenched evil”.

What soon makes the new arrival devoted to this country is the democratic trait among the people. I am not thinking here so much of the democratic political constitution of this country, however highly it must be praised. I am thinking of the relationship between individual people and of the attitude they maintain toward one another.

In the United States everyone feels assured of his worth as an individual. No one humbles himself before another person or class. Even the great difference in wealth, the superior power of a few, cannot undermine this healthy self-confidence and natural respect for the dignity of one’s fellow-man.

There is, however, a somber point in the social outlook of Americans. Their sense of equality and human dignity is mainly limited to men of white skins. Even among these there are prejudices of which I as a Jew am clearly conscious; but they are unimportant in comparison with the attitude of the “Whites” toward their fellow-citizens of darker complexion, particularly toward Negroes. The more I feel an American, the more this situation pains me. I can escape the feeling of complicity in it only by speaking out.

Recognizing the parallels between the treatment of Jews in Germany in the 1930s with blacks in the US, Einstein put his efforts and his money where his mouth was. He was a member of the NAACP. In 1946, the same year that letter was published, he received an honorary degree from Pennsylvania’s Lincoln University, the historically black school that was the alma mater of Langston Hughes and Thurgood Marshall. In a speech at the school that was not covered by a mainstream American press that otherwise couldn’t get enough of him, Einstein called racism “a disease of white people”:

My trip to this institution was in behalf of a worthwhile cause. There is a separation of colored people from white people in the United States. That separation is not a disease of colored people. It is a disease of white people. I do not intend to be quiet about it.

When singer Marian Anderson was denied a hotel room in Princeton for being black, Einstein hosted the singer at his home for this and several subsequent trips. He also came to the aid of W.E.B. Du Bois in his case against the US government:

Einstein continued to support progressive causes through the 1950s, when the pressure of anti-Communist witch hunts made it dangerous to do so. Another example of Einstein using his prestige to help a prominent African American occurred in 1951, when the 83-year-old W.E.B. Du Bois, a founder of the NAACP, was indicted by the federal government for failing to register as a “foreign agent” as a consequence of circulating the pro-Soviet Stockholm Peace Petition. Einstein offered to appear as a character witness for Du Bois, which convinced the judge to drop the case.

These and his other activities in this arena are documented in a 2006 book called Einstein on Race and Racism by Fred Jerome and Rodger Taylor.

Gravitational waves detected

posted by Jason Kottke   Feb 11, 2016

Lights Askew In Heavens

After a potential detection of gravitational waves back in 2014 turned out to be galactic dust, scientists working on the LIGO experiment have announced they have finally detected evidence of gravitational waves. Nicola Twilley has the scoop for the New Yorker on how scientists detected the waves.

A hundred years ago, Albert Einstein, one of the more advanced members of the species, predicted the waves’ existence, inspiring decades of speculation and fruitless searching. Twenty-two years ago, construction began on an enormous detector, the Laser Interferometer Gravitational-Wave Observatory (LIGO). Then, on September 14, 2015, at just before eleven in the morning, Central European Time, the waves reached Earth. Marco Drago, a thirty-two-year-old Italian postdoctoral student and a member of the LIGO Scientific Collaboration, was the first person to notice them. He was sitting in front of his computer at the Albert Einstein Institute, in Hannover, Germany, viewing the LIGO data remotely. The waves appeared on his screen as a compressed squiggle, but the most exquisite ears in the universe, attuned to vibrations of less than a trillionth of an inch, would have heard what astronomers call a chirp — a faint whooping from low to high. This morning, in a press conference in Washington, D.C., the LIGO team announced that the signal constitutes the first direct observation of gravitational waves.

The NY Times headline above is from when the concept of gravitational lensing suggested by Einstein’s theory of relatively was confirmed in 1919. I thought it was appropriate in this case. Wish they still ran headlines like that.

Update: The LIGO team has detected gravitational waves a second time.

Today, the LIGO team announced its second detection of gravitational waves-the flexing of space and time caused by the black hole collision. The waves first hit the observatory in Livingston, Louisiana, and then 1.1 milliseconds later passed through the one in Hanford, Washington.

By now, those waves are 2.8 trillion or so miles away, momentarily reshaping every bit of space they pass through.

A final test of relativity

posted by Jason Kottke   Nov 27, 2015

A European Space Agency probe will be launched into space early next month to help test the last major prediction of Einstein’s theory of general relativity: the existence of gravitational waves.

Gravitational waves are thought to be hurled across space when stars start throwing their weight around, for example, when they collapse into black holes or when pairs of super-dense neutron stars start to spin closer and closer to each other. These processes put massive strains on the fabric of space-time, pushing and stretching it so that ripples of gravitational energy radiate across the universe. These are gravitational waves.

The Lisa Pathfinder probe won’t measure gravitational waves directly, but will test equipment that will be used for the final detector.

LISA Pathfinder will pave the way for future missions by testing in flight the very concept of gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder will use the latest technology to minimise the extra forces on the test masses, and to take measurements. The inertial sensors, the laser metrology system, the drag-free control system and an ultra-precise micro-propulsion system make this a highly unusual mission.

(via @daveg)

Einstein’s first proof

posted by Jason Kottke   Nov 19, 2015

Steven Strogatz walks us through the first mathematical proof Albert Einstein did when he was a boy: a proof of the Pythagorean theorem.

Einstein, unfortunately, left no such record of his childhood proof. In his Saturday Review essay, he described it in general terms, mentioning only that it relied on “the similarity of triangles.” The consensus among Einstein’s biographers is that he probably discovered, on his own, a standard textbook proof in which similar triangles (meaning triangles that are like photographic reductions or enlargements of one another) do indeed play a starring role. Walter Isaacson, Jeremy Bernstein, and Banesh Hoffman all come to this deflating conclusion, and each of them describes the steps that Einstein would have followed as he unwittingly reinvented a well-known proof.

Twenty-four years ago, however, an alternative contender for the lost proof emerged. In his book “Fractals, Chaos, Power Laws,” the physicist Manfred Schroeder presented a breathtakingly simple proof of the Pythagorean theorem whose provenance he traced to Einstein.

Of course, that breathtaking simplicity later became a hallmark of Einstein’s work in physics. See also this brilliant visualization of the Pythagorean theorem

P.S. I love that two of the top three most popular articles on the New Yorker’s web site right now are about Albert Einstein.

The space doctor’s big idea

posted by Jason Kottke   Nov 19, 2015

Randall Munroe has a new book coming out called Thing Explainer: Complicated Stuff in Simple Words in which he uses the 1000 most common English words to explain interesting mostly scientific stuff. In a preview of the book, Munroe has a piece in the New Yorker explaining Einstein’s theory of relativity using the same constraint.

The problem was light. A few dozen years before the space doctor’s time, someone explained with numbers how waves of light and radio move through space. Everyone checked those numbers every way they could, and they seemed to be right. But there was trouble. The numbers said that the wave moved through space a certain distance every second. (The distance is about seven times around Earth.) They didn’t say what was sitting still. They just said a certain distance every second.

It took people a while to realize what a huge problem this was. The numbers said that everyone will see light going that same distance every second, but what happens if you go really fast in the same direction as the light? If someone drove next to a light wave in a really fast car, wouldn’t they see the light going past them slowly? The numbers said no-they would see the light going past them just as fast as if they were standing still.

It’s a fun read, but as Bill Gates observed in his review of Thing Explainer, sometimes the limited vocabulary gets in the way of true understanding:1

If I have a criticism of Thing Explainer, it’s that the clever concept sometimes gets in the way of clarity. Occasionally I found myself wishing that Munroe had allowed himself a few more terms — “Mars” instead of “red world,” or “helium” instead of “funny voice air.”

See also Albert Einstein’s Theory of Relativity In Words of Four Letters or Less. You might prefer this explanation instead, in the form of a video by high school senior Ryan Chester:

This video recently won Chester a $250,000 Breakthrough Prize college scholarship.2 Nice work!

  1. Other quibble: I would have called Einstein the time doctor. [cue Tardis noise]

  2. Which reminds me of when I was a high school senior and I showed a clip of Bill & Ted’s Excellent Adventure to my physics class for a report on time travel and wormholes. It’s been all downhill for me since then.

Supernova reruns

posted by Jason Kottke   Mar 05, 2015

Astronomers have been able to view the same supernova in a distant part of the Universe several times due to the gravitational lensing effect of a cluster of galaxies in-between here and there. From Dennis Overbye in the NY Times:

Supernovas are among the most violent and rare events in the universe, occurring perhaps once per century in a typical galaxy. They outshine entire galaxies, spewing elemental particles like oxygen and gold out into space to form the foundations of new worlds, and leaving behind crushed remnants called neutron stars or black holes.

Because of the galaxy cluster standing between this star and the Hubble, “basically, we got to see the supernova four times,” Dr. Kelly said. And the explosion is expected to appear again in another part of the sky in the next 10 years. Timing the delays between its appearances, he explained, will allow astronomers to refine measurements of how fast the universe is expanding and to map the mysterious dark matter that supplies the bulk of the mass and gravitational oomph of the universe.

Scientists expect the supernova to reappear in the next few years. Gravitational lensing was predicted by Einstein’s general theory of relativity and as Overbye writes, “the heavens continue to light candles for Albert Einstein.”

Einstein’s desk

posted by Jason Kottke   Apr 20, 2010

Here’s a photograph of Albert Einstein’s Princeton desk taken only a few hours after he died in 1955.

Einsteins Desk

It’s from a slideshow of photos taken at the time of Einstein’s death but never published before last week. (via clusterflock)

Einstein’s 1905 chronology

posted by Jason Kottke   Feb 09, 2010

In 1905, Einstein came up with the concept of special relativity, published his paper on the photoelectric effect, finished his doctoral dissertation, devised the E=mc^2 concept, published a paper on Brownian motion, was approved for his doctorate, and turned 26.

So……what have you guys been up to?

For sale: Albert Einstein’s watch

posted by Jason Kottke   Sep 19, 2008

Among the watches being auctioned at a sale in October is a watch once owned by Albert Einstein.

For the Einstein fan, we have a Longines that was owned by the scientist himself. It is a unique and historically important wristwatch, made in 1930.The watch was presented to Professor Albert Einstein on February 16, 1931 in Los Angeles. It is a fine, tonneau-shaped, 14K yellow gold wristwatch accompanied by various photos showing Prof. Einstein wearing the watch. Estimate: $25,000 - $35,000

You’d think that the price for timepiece once owned by the man who changed our conceptions about time and space would be substantial, but it’s one of the lower priced featured watches. And the price is not even close to the world record:

In 2002, Antiquorum established the all-time world record price for a wristwatch at auction when it sold a platinum Patek Philippe World Time Ref. 1415 from 1939 for an astounding CHF 6,603,500 (US$ 4,026,524). This record-breaking price more than doubled the previous world record price for a wristwatch at auction. Another record price for a modern watch was achieved in 2004, the unique white gold Calibre 89, also by Patek Philippe, was sold for SFr. 6,603,500 (US$ 5,002,652).

(thx, sam)

Cute little pixelated Albert Einstein video from eBoy.

posted by Jason Kottke   Jan 17, 2007

Cute little pixelated Albert Einstein video from eBoy.

A moving mass has been shown to

posted by Jason Kottke   Mar 24, 2006

A moving mass has been shown to generate a gravitomagnetic field (just like a moving electrical charge creates a magnetic field) and “the measured field is a surprising one hundred million trillion times larger than Einstein’s General Relativity predicts”. (via rw)

How Einstein & Darwin wrote letters, people

posted by Jason Kottke   Oct 27, 2005

How Einstein & Darwin wrote letters, people write email, and birds forage for food may reveal general patterns in how animals decide among competing tasks.

Brian Greene on Einstein’s most famous equation,

posted by Jason Kottke   Oct 05, 2005

Brian Greene on Einstein’s most famous equation, E =mc^2. When he finally gets around to it in the middle of the article, Greene’s got a pretty good layman’s explanation of what the formula actually means.

PBS has put up a companion web

posted by Jason Kottke   Aug 18, 2005

PBS has put up a companion web site to the Nova program on Einstein airing in October. Features include audio clips of several physicists describing e=mc^2 to non-physicists.

The importance of narrative in science

posted by Jason Kottke   Jul 19, 2005

The importance of narrative in science. “Science and stories are not only compatible, they’re inseparable, as shown by Einstein’s classic 1905 paper on the photoelectric effect”.

A near perfect Einstein Ring found

posted by Jason Kottke   May 02, 2005

A near perfect Einstein Ring found. Close galaxies can act as a lens for farther galaxies, focusing the distant light with an “Einstein Ring”.

Brian Greene on Albert Einstein’s miracle year,

posted by Jason Kottke   Apr 08, 2005

Brian Greene on Albert Einstein’s miracle year, his discovery of the photoelectric effect, and his uneasiness with quantum mechanics.